REDUCING ENERGY CONSUMPTION OF BARKWOOD WASTE GRINDING ON EQUIPMENT WITH KNIFE-BASED OPERATIONAL UNITS

  • Ol'ga Kunickaya Yakut State Agricultural Academy
  • Artem Zhuk Bratsk State University
  • Valentina Nikiforova Bratsk State University
  • Svetlana Chzhan Bratsk State University
  • Mariia Gorodnichina Federal State Budget Educational Institution of Higher Education "Petrozavodsk State University"
  • Elena Runova Bratsk State University
  • Ivan Garus Bratsk State University
  • Viktor Ivanov Bratsk State University
Keywords: model of grinding, specific energy consumption, wood grinding, wood waste recycling

Abstract


In the coming decades, wood waste management for biofuel production is regarded as a promising renewable energy source and a key factor in reducing carbon dioxide emissions. Mechanical grinding is seen as one of the main techniques in wood waste pre-treatment operations that increases the value of feedstock used for fuel. The application potential of the ground product highly depends on the energy efficiency of the process. This work aimed to establish a consistent pattern for estimating the energy consumption required for grinding spruce and pine barking waste depending on the degree to which materials are ground and their relative moisture content. The energy consumption parameters at grinding were analyzed employing three grinding energy models of Rittinger, Kripichev-Kik, and Bond. The results of estimation showed that specific energy consumption is associated with relative moisture content and the grinding degree by nonlinear dependence according to the Kripichev-Kik grinding model for spruce and pine bark. It has been established that the specific energy consumption at grinding spruce and pine barking waste at the optimum humidity of 25% and 27%, respectively, is proportional to the natural logarithm of the grinding degree. It was concluded that the wood waste grinding by 5–15 times requires higher energy consumption at optimum moisture content, which is 5–10% and 7–14% of the heating value for spruce and pine, respectively. The knowledge acquired through this research will contribute to developing possible approaches for wood waste recycling in a more energy-efficient way.

References

1. Gasparyan G., Kunickaya O.G., Grigorev I., Ivanov V., Burmistrova O., Manukovskii A., Zhuk A., Hertz E.F., Kremleva L., Mueller O. (2018). Woodworking facilities: Driving efficiency through Automation applied to major process steps. International Journal of Engineering and Technology, vol. 7 (4.7), 368-375, DOI: 10.14419/ijet.v7i4.7.23032
2. Kozlov V.G., Skrypnikov A.V., Sushkov S.I., Kruchinin I.N., Grigorev I.V., Nikiforov A.A., Pilnik Y.N., Teppoev A.V., Lavrov M., Timokhova O.M. (2019). Enhancing quality of road pavements through adhesion improvement. Journal of the Balkan Tribological Association, vol. 25, no. 3, 678-694.
3. Gerasimov Y., Seliverstov A. (2010). Industrial round-wood losses associated with harvesting systems in Russia. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, vol. 31, no. 2, 111-126.
4. Goncharenko L.P., Garnov A.P., Sybachin S.A., Khorshikyan S.V. (2018). Innovative Development on the Basis of Woodworking Enterprises. Advanced Science Letters, vol. 24, no. 7, 5438-5442, DOI: 10.1166/asl.2018.11752
5. Namsaraev Z.B., Gotovtsev P.M., Komova A.V., Vasilov R.G. (2018). Current status and potential of bioenergy in the Russian Federation. Renewable and Sustainable Energy Reviews, vol. 81, 625-634, DOI: 10.1016/j.rser.2017.08.045
6. Bentsen N.S., Felby C. (2012). Biomass for energy in the European Union-a review of bioenergy resource assessments. Biotechnology for biofuels, vol. 5, no. 1, 25, DOI: 10.1186/1754-6834-5-25
7. Brackley A.M., Barber V.A., Pinkel, C. (2010). Developing estimates of potential demand for renewable wood energy products in Alaska. General Technical Reports PNW-GTR-827. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, vol. 31, p. 827.
8. Alakangas E. (2016). Biomass and agricultural residues for energy generation. Oakey J (Ed.), Fuel Flexible Energy Generation. Woodhead Publishing, p. 59-96, DOI: 10.1016/B978-1-78242-378-2.00003-1
9. De Wit M., Faaij A. (2010). European biomass resource potential and costs. Biomass and bioenergy, vol. 34. no. 2, 188-202, DOI: 10.1016/j.biombioe.2009.07.011
10. Haberl H., Beringer T., Bhattacharya S.C., Erb K.H., Hoogwijk M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, vol. 2, no. 5-6, 394-403, DOI: 10.1016/j.cosust.2010.10.007
11. Repo A., Böttcher H., Kindermann G., Liski, J. (2015). Sustainability of forest bioenergy in Europe: land‐use‐related carbon dioxide emissions of forest harvest residues. Gcb Bioenergy, vol. 7, no. 4, 877-887, DOI: 10.1111/gcbb.12179
12. Smeets E.M., Faaij A.P. (2007). Bioenergy potentials from forestry in 2050. Climatic Change, vol. 81, no. 3-4, 353-390. DOI: 10.1007/s10584-006-9163-x
13. Jakes J.E., Arzola X., Bergman R., Ciesielski P., Hunt C.G., Rahbar N., Tshabalala M., Wiedenhoeft, A.C., Zelinka S.L. (2016). Not just lumber—Using wood in the sustainable future of materials, chemicals, and fuels. JOM, vol. 68, no. 9, 2395-2404, DOI: 10.1007/s11837-016-2026-7
14. Laborczy G., Winkler A. (2016). The Hungarian Wood-Based Panel Industry and its Impact on the Environment. Acta Silvatica et Lignaria Hungarica, vol. 12, no. 2, 157-172, DOI: 10.1515/aslh-2016-0014
15. Dukes C.C., Baker S.A., Greene W.D. (2013). In-wood grinding and screening of forest residues for biomass feedstock applications. Biomass and Bioenergy, vol. 54, 18-26, DOI: 10.1016/j.biombioe.2013.02.032
16. Ghorbani Z., Hemmat A., Masoumi A.A. (2012). Physical and mechanical properties of alfalfa grind as affected by particle size and moisture content. Journal of Agricultural Science and Technology, vol. 14, no. 1, 65-76.
17. Kronbergs A., Kronbergs E., Rozinskis, R. (2012). Size reduction of common reeds for biofuel production. Engineering for Rural Development, vol. 1, 257-261.
18. Khullar E., Dien B.S., Rausch K.D., Tumbleson M.E., Singh V. (2013). Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial crops and products, vol. 44, 11-17, DOI: 10.1016/j.indcrop.2012.10.015
19. Vidal B.C., Dien B.S., Ting K.C., Singh V. (2011). Influence of feedstock particle size on lignocellulose conversion—a review. Applied biochemistry and biotechnology, vol. 164, no. 8, 1405-1421, DOI: 10.1007/s12010-011-9221-3
20. Kokko L., Tolvanen H., Hämäläinen K., Raiko R. (2012). Comparing the energy required for fine grinding torrefied and fast heat treated pine. Biomass and bioenergy, vol. 42, 219-223, DOI: 10.1016/j.biombioe.2012.03.008
21. Repellin V., Govin A., Rolland M., Guyonnet R. (2010). Energy requirement for fine grinding of torrefied wood. Biomass and Bioenergy, vol. 34, no. 7, 923-930, DOI: 10.1016/j.biombioe.2010.01.039
22. Esteban L.S., Carrasco J.E. (2006). Evaluation of different strategies for pulverization of forest biomasses. Powder technology, vol. 166, no. 3, 139-151, DOI: 10.1016/j.powtec.2006.05.018
23. Mafakheri F., Nasiri F. (2014). Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy policy, vol. 67, 116-126, DOI: 10.1016/j.enpol.2013.11.071
24. Mani S., Tabil L.G., Sokhansanj S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and bioenergy, vol. 27, no. 4, 339-352, DOI: 10.1016/j.biombioe.2004.03.007
25. Gent M., Menendez M., Toraño J., Torno S. (2012). A correlation between Vickers Hardness indentation values and the Bond Work Index for the grinding of brittle minerals. Powder technology, vol. 224, 217-222. DOI: 10.1016/j.powtec.2012.02.056
26. Liu X., Zhang M., Hu N., Yang H., Lu J. (2016). Calculation model of coal comminution energy consumption. Minerals Engineering, vol. 92, 21-27, DOI: 10.1016/j.mineng.2016.01.008
27. Niedzwiecki L. (2011). Energy requirements for comminution of fibrous materials-qualitative chipping model. Linnaeus University, School of Engineering.
28. Makarenkov D.A., Nazarov V.I. (2011). Characteristics of mechano-activation in vibratory pulverizers and drum mills in the preparatory and granulation stages of disperse media. Chemical and Petroleum Engineering, vol. 47, no. 1-2, 121, DOI: 10.1007/s10556-011-9435-9
29. Temmerman M., Jensen P.D., Hebert J. (2013). Von Rittinger theory adapted to wood chip and pellet milling, in a laboratory scale hammermill. Biomass and bioenergy, vol. 56, 70-81, DOI: 10.1016/j.biombioe.2013.04.020
30. Jiang J., Wang J., Zhang X., Wolcott M. (2017). Characterization of micronized wood and energy-size relationship in wood comminution. Fuel Processing Technology, vol. 161, 76-84, DOI: 10.1016/j.fuproc.2017.03.015
31. Miao Z., Grift T.E., Hansen A.C., Ting K.C. (2011). Energy requirement for comminution of biomass in relation to particle physical properties. Industrial crops and products, vol. 33, no. 2, 504-513, DOI: 10.1016/j.indcrop.2010.12.016
32. Liu Y., Wang J., Wolcott M.P. (2016). Assessing the specific energy consumption and physical properties of comminuted Douglas-fir chips for bioconversion. Industrial Crops and Products, vol. 94, 394-400, DOI: 10.1016/j.indcrop.2016.08.054
33. Zhang M., Song X., Deines T.W., Pei Z.J., Wang, D. (2012). Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction. BioMed Research International, vol. 2, 581039, DOI: 10.1155/2012/581039
Published
2020/09/15
Section
Original Scientific Paper