THEORETICAL STUDIES OF THE HEATING SYSTEM IN THE VEHICLE COMPARTMENT DURING PASSENGER TRANSPORTATION TAKING INTO ACCOUNT BREATHING UNDER CONDITIONS OF LOW TEMPERATURES

  • Denis Aleshkov Siberian State Automobile and Highway University (SibADI)
  • Mikhail Banket Siberian State Automobile and Highway University (SibADI)
  • Mikhail Sukovin Siberian State Automobile and Highway University (SibADI)
  • Irina Pogulyaeva Siberian State Automobile and Highway University (SibADI)
  • Svetlana Yanchij Omsk State Technical University (OmSTU)
Keywords: heating system, microclimate parameters, thermal comfort

Abstract


This paper presents the results of theoretical computer-aided research of the microclimate parameters in the vehicle passenger compartment during operation of one of the widely used schemes of heating system in the passenger compartment, taking into account the breathing of passengers. Theoretical researches of the heating system operation in the passenger compartment taking into account passenger breathing have been conducted. Distribution of microclimate parameters in the passenger compartment cross-section, in the case of using a heating system having one compartment heater, with and without taking into account the breathing of passengers, has been obtained. The assessment of the effect of passengers' breathing on the microclimate parameters in the passenger compartment has been carried out. The outcomes of this research may be of interest to specialists involved in the design and ergonomics of wheeled vehicles and labor protection. 

References

1. Berestneva, O. G., Zharkova, O. S., Shevelev, G. E., & Urazaev, A. M. (2015). Methods for analysis of adaptation processes in on-off work pattern of oilmen's labor. Modern Problems of Science and Education, 4, 212–218.
2. Cui, W., Cao, G., Park, J., Ouyang, Q., & Zhu, Y. (2013). Influence of indoor air temperature on human thermal comfort, motivation and performance. Building and Environment, 68, 114-122. doi: 10.1016/j.buildenv.2013.06.012
3. Croitoru, C., et al. (2011). Numerical and experimental modeling of airflow and heat transfer of a human body. Roomvent 2011.
4. Nielsen, P. (2007). Analysis and Design of Room Air Distribution Systems. HVAC&R Research, 13, 987-997. doi: 10.1080/10789669.2007.10391466
5. Yang, C., Yang, X., & Zhao, B. (2015). The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation, 8, 551–565. doi: 10.1007/s12273-014-0227-6
6. Schmeling, D., & Bosbach, J. (2017). On the influence of sensible heat release on displacement ventilation in a train compartment. Building and Environment, 125, 248-260. doi: 10.1016/j.buildenv.2017.08.039
7. Aliahmadipour, M., & Abdolzadeh, M., & Lari, K. (2017). Air flow simulation of HVAC system in compartment of a passenger coach. Applied Thermal Engineering, 123, 973-990. doi: 10.1016/j.applthermaleng.2017.05.086
8. Bosbach, J., Lange, S., Dehne, T., Lauenroth, G., Hesselbach, F., & Allzeit, M. (2013). Alternative Ventilation Concepts for Aircraft Cabins. CEAS Aeronautical Journal, 4, 301–313. doi: 10.1007/s13272-013-0074-z
9. Canbolat, A., Türkan, B., Etemoglu, A., & Can, M. (2016). Numerical investigation into thermal comfort conditions in a midibus. The Journal of MacroTrends in Applied Science, 4, 13-23.
10. Ivanescu, M., Neacsu, C. A., & Tabacu, I. (2010). Studies of the Thermal Comfort Inside of the Passenger Compartment Using the Numerical Simulation. International Congress Motor Vehicles & Motors 2010.
11. Mao, Y., & Wang, J., & Li, J.-M. (2018). Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating. Applied Thermal Engineering, 137, 356-367. doi: 10.1016/j.applthermaleng.2018.03.099
12. Zhang, H., Dai, L., Xu, G., Li, Y., Chen, W., & Tao, W.-Q. (2009). Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and saving energy. Part I: Test/numerical model and validation. Applied Thermal Engineering, 29, 2022-2027. doi: 0.1016/j.applthermaleng.2008.10.005
13. Schmeling, D., & Bosbach, J. (2019). Influence of shape and heat release of thermal passenger manikins on the performance of displacement ventilation in a train compartment. Indoor and Built Environment. doi: 10.1177/1420326X19856673
14. Dong, Z., Zhou, B., Li, F., Wang, Y., Lin, X., & Wu, X. (2017). Investigation of Thermal Plume around a Simulated Standing Operator in an Operating Room. Procedia Engineering, 205, 1940-1945. doi: 10.1016/j.proeng.2017.10.053
15. Ünal, Ş. (2017). An Experimental Study on a Bus Air Conditioner to Determine its Conformity to Design and Comfort Conditions. Journal of Thermal Engineering, 3, 1089-1101. doi: 10.18186/thermal.277288
16. Zhou, X., Lai, D., & Chen, Q. (2018). Experimental investigation of thermal comfort in a passenger car under driving conditions. Building and Environment, 149, 109-119. doi: 10.1016/j.buildenv.2018.12.022
17. Paul Alexandru, D., Nastase, I., Bode, F., Croitoru, C., Angel, D., & Meslem, A. (2019). Evaluation of the thermal comfort for its occupants inside a vehicle during summer. IOP Conference Series: Materials Science and Engineering, 595, 012027. doi: 10.1088/1757-899X/595/1/012027
18. Khaiwal, R., Agarwal, N., & Mor, S. (2020). Assessment of thermal comfort parameters in various car models and mitigation strategies for extreme heat-health risks in the tropical climate. Journal of Environmental Management, 267, 110655. doi: 10.1016/j.jenvman.2020.110655
19. Qi, C., Helian, Y., Liu, J., & Zhang, L. (2017). Experiment Study on the Thermal Comfort inside a Car Passenger Compartment. Procedia Engineering, 205, 3607-3614. doi: 10.1016/j.proeng.2017.10.211
20. He, Y., Yang, J., Ling, J., Du, Y., & Zhang, Z. (2020). Predictive modeling for overall thermal sensation of vehicle occupants based on local thermal sensation when warming up. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(8), 2127–2134. doi: 10.1177/0954407020902564
21. Lange, P., Schmeling, D., Hoermann, H., & Volkmann, A. (2019). Comparison of local equivalent temperatures and subjective thermal comfort ratings with regard to passenger comfort in a train compartment. IOP Conference Series: Materials Science and Engineering, 609, 032042. doi: 10.1088/1757-899X/609/3/032042
22. Foda, E., Almesri, I., Awbi, H. B., & Sirén, K. (2011). Models of human thermoregulation and the prediction of local and overall thermal sensations. Building and Environment, 46, 2023-2032. doi: 10.1016/j.buildenv.2011.04.010
23. Huizenga, C., Hui, Z., & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36, 691–699.
24. Foda, E., & Sirén, K. (2011). A new approach using the pierce two-node model for different body parts. International Journal of Biometeorology, 55, 519–532.
25. Alahmer, A., Abdelhamid, M., & Omar, M. (2012). Design for thermal sensation and comfort states in vehicles cabins. Applied Thermal Engineering, 36, 126–140. doi: 10.1016/j.applthermaleng.2011.11.056
26. Paul Alexandru, D., Vartires, A., & Angel, D. (2016). An Overview of Current Methods for Thermal Comfort Assessment in Vehicle Cabin. Energy Procedia, 85, 162-169. doi: 10.1016/j.egypro.2015.12.322
27. Yang, C.-J., Yang, T.-C., Chen, P.-T., & Huang, K.D. (2019). An Innovative Design of Regional Air Conditioning to Increase Automobile Cabin Energy Efficiency. Energies, 12, 2352.
28. Croitoru, C., Nastase, I., Bode, F., Meslem, A., & Dogeanu, A. (2015). Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renewable and Sustainable Energy Reviews, 44, 304-318.
29. Paul Alexandru, D., Bode, F., Nastase, I., & Meslem, A. (2018). CFD simulation of a cabin thermal environment with and without human body – thermal comfort evaluation. E3S Web of Conferences, 32, 01018. doi: 10.1051/e3sconf/20183201018
30. Kristanto, D., & Leephakpreeda, T. (2017). Sensitivity analysis of energy conversion for effective energy consumption, thermal comfort, and air quality within car cabin. Energy Procedia, 138, 552–557.
31. Khatoon, S., & Kim, M.H. (2020). Thermal Comfort in the Passenger Compartment Using a 3-D Numerical Analysis and Comparison with Fanger’s Comfort Models. Energies, 13, 690. doi: 10.3390/en13030690
32. Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Thompson, S.M. (2019). Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5(5), 954-969.
33. Oh, M., Ahn, J., Kim, D., Jang, D., & Kim, Y. (2014). Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system. Applied Energy, 133, 14–21. doi: 10.1016/j.apenergy.2014.07.089
34. Li, J., Cao, X., Liu, J., Mohanarangam, K., & Yang, W. (2018). PIV measurement of human thermal convection flow in a simplified vehicle cabin. Building and Environment, 144, 305-315. doi: 10.1016/j.buildenv.2018.08.031
35. Chen, Q. (1995). Comparison of different k-ε models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28, 353–369.
36. Chen, Q., Zhang, Z., & Zuo, W. (2007). Computational fluid dynamics for indoor environment modeling: Past, present, and future. IAQVEC 2007 Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings: Sustainable Built Environment, 1-9.
37. Ansys. (2012). ANSYS/FLUENT User’s Manual. Release Version 14.5. https://www.ansys.com
38. Warey, A., Kaushik, S., Khalighi, B., Cruse, M., & Venkatesan, G. (2020). Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results. International Journal of Heat and Mass Transfer, 148, 119083.
39. Simion, M., Socaciu, L., & Unguresan, P. (2016). Factors which influence the thermal comfort inside of vehicles. Energy Procedia, 85, 472–480.
40. Almeida, M., Paula Xavier, A., Michaloski, A., & Luiz Soares, A. (2020). Thermal Comfort in Bus Cabins: A Review of Parameters and Numerical Investigation. In: Arezes P., Santos Baptista, J., Barroso, M. P., Carneiro P., Cordeiro, P., Costa, N., Melo, R.B., Sérgio Miguel, A., & Perestrelo, G. (eds.) Occupational and Environmental Safety and Health II. Studies in Systems, Decision and Control, vol. 277. Springer, Cham, 499-506. doi: 10.1007/978-3-030-41486-3_54
41. Jung, H. (2013). Modeling CO2 Concentrations in Vehicle Cabin. SAE 2013 World Congress & Exhibition. doi: 10.4271/2013-01-1497
42. Aleshkov, D.S., & Bedrina, E.A. (2015). Physical and biological impact factors on the formation of small groups. Proceedings of the International Scientific and Practical Conference “Science of the XXI Century: The Experience of the Past – a Look into the Future”, 456–460.
43. Sun, X., He, J., & Yang, X. (2017). Human breath as a source of VOCs in the built environment, Part I: A method for sampling and detection species. Building and Environment, 125, 565-573. doi: 10.1016/j.buildenv.2017.06.038
44. Bivolarova, M., Kierat, W., Zavrl, E., Zbigniew, P., & Melikov, A. (2017). Effect of airflow interaction in the breathing zone on exposure to bio-effluents. Building and Environment, 125, 216-226. doi: 10.1016/j.buildenv.2017.08.043
45. Vianello, A., Jensen, R., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9, 8670. doi: 10.1038/s41598-019-45054-w
46. Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Tsolas, N., & Thompson, S.M. (2019). Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5(5), 954-969.
47. Trusov, P.V., Zaitseva, N.V., Zinker, M.Yu., & Babushkina, A.V. (2018). Simulation of the dusty air flow in the respiratory tract. Russian Journal of Biomechanics, 22(3), 301-314.
48. Rim, D., & Novoselac, A. (2009). Transport of particulate and gaseous pollutants in the vicinity of a human body. Building and Environment, 44, 1840-1849. doi: 10.1016/j.buildenv.2008.12.009
49. Potekhina, Y.P., & Golovanova, M.V. (2010). Causes of changes in the body's local temperature. Medical Almanac, 2(11), 297–298.
50. Benderskiy, B.Ya., & Petrov, R.A. (2017). Investigation of the spatial processes of the bus passenger compartment heating. Truck, 6, 3–8.
Published
2020/08/26
Section
Original Scientific Paper