A GREEN AND LOW-COST OF MESOPOROUS ELECTRODE BASED ACTIVATED CARBON MONOLITH DERIVED FROM FALLEN TEAK LEAVES FOR HIGH ELECTROCHEMICAL PERFORMANCE

  • Erman Taer Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia
  • Miftah Ainul Mardiah Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia
  • Agustino Agustino Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia
  • Widya Sinta Mustika Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia
  • Apriwandi Apriwandi Universitas Riau, Faculty of Mathematic and Natural Science, Department of Physics, Pekanbaru, Indonesia
  • Rika Taslim Islamic State University of Sultan Syarif Kasim, Faculty of Science and Technology, Departement of Industrial Engineering, Pekanbaru, Indonesia
Keywords: activated carbon, mesoporous, monolith, supercapacitor, teak leaves

Abstract


Mesoporous carbon materials derived from the novel biomass of fallen teak leaves were synthesized using versatile, low cost, and environmentally friendly route. Therefore, mesoporous carbon materials were prepared in the monolith form, followed by treatment with the integrated pyrolysis of both carbonization and physical activation. In addition, there are detailed studies and analysis on the influences of chemical activation processes under different concentrations on the textural properties, morphology, crystalline degree, surface element and electrochemical performance. These mesoporous carbon possess the highest specific surface area of 489.81 m2 g-1, with a pore volume of 0.293 cm3 g-1, and well-developed mesoporosity. Hence, the electrode of mesoporous carbon for supercapacitor in  a two electrode system with 1 M H2SO4, exhibits a high specific capacitance 280 F g-1 without heteroatom doping. This report provides an effective route to utilize the novel biomass of fallen teak leaves, with the potential benefits of waste reduction and the production of excellent electrode to serve as energy storage materials.

References

Zakeri, B., Syri, S., (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Re¬new. Sustain. Energy Rev., vol. 42, 569–596, DOI: 10.1016/j.rser.2014.10.011

Koohi-Fayegh, S., Rosen, M.A., (2020). A review of energy storage types, applications and recent devel¬opments. J. Energy Storage, vol. 27, 101047, DOI: 10.1016/j.est.2019.101047

Lefebvre, D., Tezel, F.H., (2017). A review of ener¬gy storage technologies with a focus on adsorption thermal energy storage processes for heating appli¬cations. Renew. Sustain. Energy Rev., vol. 67, 116– 125, DOI: 10.1016/j.rser.2016.08.019

Khiari, B., Jeguirim, M., Limousy, L., Bennici, S., (2019). Biomass derived chars for energy applica¬tions. Renew. Sustain. Energy Rev., vol. 108, 253– 273, DOI: 10.1016/j.rser.2019.03.057

Huang, J., Chen, L., Dong, H., Zeng, Y., Hu, H., Zheng, M., Liu, Y., Xiao, Y., Liang, Y., (2017). Hier¬archical porous carbon with network morphology de¬rived from natural leaf for superior aqueous symmet¬rical supercapacitors. Electrochim. Acta, vol. 258, 504–511, DOI: 10.1016/j.electacta.2017.11.092

Iqbal, M.Z., Zakar, S., Haider, S.S., (2020). Role of aqueous electrolytes on the performance of elec¬trochemical energy storage device. J. Electroanal. Chem., vol. 858, 113793, DOI: 10.1016/j.jelech¬em.2019.113793

Yu, Y., Ye, Z., Chen, W., Wang, Q., Wang, H., Zhang, H., Peng, C., (2019). Plane tree bark-derived meso¬pore-dominant hierarchical carbon for high-voltage supercapacitors. Appl. Surf. Sci., vol. 507, 145190, DOI: 10.1016/j.apsusc.2019.145190

Zhao, C., Huang, Y., Zhao, C., Shao, X., Zhu, Z., (2018). Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapac¬itors. Electrochim. Acta, vol. 291, 287–296, DOI: 10.1016/j.electacta.2018.09.136

Miller, E.E., Hua, Y., Tezel, F.H., (2018). Materials for energy storage: Review of electrode materials and methods of increasing capacitance for super¬capacitors. J. Energy Storage, vol. 20, 30–40, DOI: 10.1016/j.est.2018.08.009

Fic, K., Platek, A., Piwek, J., Frackowiak, E., (2018). Sustainable materials for electrochemical capaci¬tors. Mater. Today, vol. 21, 437–454, DOI: 10.1016/j. mattod.2018.03.005

Ratajczak, P., Suss, M.E., Kaasik, F., Beguin, F., (2018). Carbon electrodes for capacitive technolo¬gies. Energy Storage Mater, vol. 166, 126–145, DOI: 10.1016/j.ensm.2018.04.031

Inagaki, M., Konno, H., Tanaike, O., (2010). Carbon materials for electrochemical capacitors. J. Power Sources, vol. 195, 7880–7903, DOI: 10.1016/j.jpow¬sour.2010.06.036

Zhao, X., Chen, H., Kong, F., Zhang, Y., Wang, S., Liu, S., Lucia, L.A., Fatehi, P., Pang, H., (2019). Fabrication, characteristics and applications of car¬bon materials with different morphologies and po¬rous structures produced from wood liquefaction: A review. Chem. Eng. J., vol. 364, 226–243, DOI: 10.1016/j.cej.2019.01.159

Jiang, C., Yakaboylu, G.A., Yumak, T., Zondlo, J.W., Edward, M., Wang, J., (2020). Activated carbons prepared by indirect and direct CO2 activation of lig¬nocellulosic biomass for supercapacitor electrodes. Renew. Energy, vol. 155, 38–52, DOI: 10.1016/j. renene.2020.03.111

Danish, M., Ahmad, T., (2018). A review on utiliza¬tion of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev., vol. 87, 1–21, DOI: 10.1016/j. rser.2018.02.003

Shanmuga, P.M., Divya, P., Rajalakshmi, R., (2020). A review status on characterization and electro¬chemical behaviour of biomass derived carbon ma¬terials for energy storage supercapacitors. Sustain. Chem. Pharm., vol. 16, 100243, DOI: 10.1016/j. scp.2020.100243

Taer, E., Natalia, K., Apriwandi, A., Taslim, R., Far¬ma, R., (2020). The synthesis of activated carbon nanofiber electrode made from acacia leaves (Aca¬cia mangium wild) as supercapacitors, Adv. Nat. Sci: Nanosci. Nanotechnol., vol. 11, 025007, DOI: 10.1088/2043-6254/ab8b60

Mohammedkhair, A.K., Aziz, M.A., Shah, S.S., Shaikh, M.N., Jamil, A.K., Qasem, M.A.A. Buliyam¬inu, I.A. Yamani, Z.H., (2020). Effect of an activating agent on the physicochemical properties and super¬capacitor performance of naturally nitrogen-enriched carbon derived from Albizia procera leaves. Arabi¬an Journal of Chemistry, vol. 13, 6161-6173, DOI: 10.1016/j.arabjc.2020.05.017

Jain, D., Kanungo, J., Tripathi, S.K., (2020). En¬hancement in performance of supercapacitor using eucalyptus leaves derived activated carbon elec¬trode with CH3COONa and HQ electrolytes: A step towards environment benign supercapacitor. J. Al¬loys Compd., vol. 832, 154956, DOI: 10.1016/j.jall¬com.2020.154956

Zhang, Y., Wang, C., Jiang, H., Wang, Q., Zheng, J., Meng, C., (2019). Cobalt-nickel silicate hydroxide on amorphous carbon derived from bamboo leaves for hybrid supercapacitors. Chem. Eng. J., vol. 375, 121938, DOI: 10.1016/j.cej.2019.121938

Wang, Y. Shao, C., Qiu, S., Zhu, Y., Qin, M., Meng, Y., Wang, Y., Chu, H., Zou, Y., Xiang, C., Zeng, J.L., Cao, Z., Xy, F., Sun, L., (2019). Nitrogen-doped porous carbon derived from ginkgo leaves with re¬markable supercapacitance performance. Diam. Relat. Mater., vol. 98, 107475, DOI: 10.1016/j.dia¬mond.2019.107475

Lu, Q., Zhou, S., Li, B., Wei, H., Zhang, D., Hu, J., Zhang, J., Liu, Q., Zhou, S., Li, B., Wei, H., Zhang, D., Hu, J., Zhang, L., Zhang, J., Liu, Q., (2020). Mes¬opore-rich carbon flakes derived from lotus leaves and it’s ultrahigh performance for supercapacitors. Electrochim. Acta, vol. 333, 135481, DOI: 10.1016/j. electacta.2019.135481

Divya, P., Rajalakshmi, R., (2020). Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors. J. Energy Storage, vol. 27, 101149, DOI: 10.1016/j. est.2019.101149

Ma, H., Liu, Z., Wang, X., Zhang, C., Jiang, R., (2017). Supercapacitive performance of porous carbon ma¬terials derived from tree leaves. J. Renew. Sustain. Energy, vol. 9, 044105, DOI: 10.1063/1.4997019

Liu, Y., Wang, Y., Zhang, G., Wang, D., Dong, Y., (2016). Preparation of activated carbon from willow leaves and evaluation in electric double-layer capac¬itors. Mater. Lett., vol. 176, 60–63, DOI: 10.1016/j. matlet.2016.04.065

Sagala, S (2015). Fostering Community Participa¬tion to Wildfire: Experiences from Indonesia, Elsevi¬er Inc., DOI: 10.1016/B978-0-12-410434-1.00007-5

Taer, E., Mardiah, M.A., Sugianto, Juliani, R., Aw¬itdrus, Farma, R., (2019). An introductory study on activated carbon monolith electrodes fabrication from teak leaf waste. J. Technomaterials Phys., vol. 1, 31–38

Wang, Y., Qu, Q., Gao, S., Tang, G., Liu, K., He, S., Huang, C., (2019). Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon, vol. 155, 706–726, DOI: 10.1016/j.car¬bon.2019.09.018

Moreno-Fernandez, G., Kunowsky, M., Lillo-rode¬nas, M.A., Ibanez, J., Rojo, J.M., (2017). New car¬bon monoliths for supercapacitor electrodes. look¬ing at the double layer. ChemElectroChem, vol. 4, 1016–1025, DOI: 10.1002/celc.201600848

Taer, E., Taslim, R., Sugianto, Paiszal, M., Mukhlis., Mustika, W.S., Agustino., (2018). Meso-and microp¬orous carbon electrode and its effect on the capaci¬tive, energy and power properties of supercapacitor. Int. J. Power Electron. Drive Syst., vol. 9, 1263-1271, DOI: 10.11591/ijpeds.v9n3.pp1263-1271

Taer, E., Apriwandi., Handayani, R., Taslim, R., Aw¬itdrus, Amri, A., Agustino., Iwantono, I., (2019). The Synthesis of Bridging Carbon Particles with Carbon Nanotubes from Areca catechu Husk Waste as Su¬percapacitor Electrodes. Int. J. Electrochem. Sci., vol. 14, 9436–9448, DOI: 10.20964/2019.10.34

Indonesia, D.J.K.I.R., (2015) Berita resmi paten se¬derhana seri-A. vol. 3, 1–3

Taer, E., Sugianto., Sumantre, M.A., Taslim, R., Iwan¬tono, Dahlan, D., Deraman, M., (2014). Eggs Shell Membrane as Natural Separator for Supercapacitor Applications. Adv. Mater. Res., vol. 896, 66–69, DOI: 10.4028/www.scientific.net/AMR.896.66

Yang, X., Kong, L., Cao, M., Liu, X., Li, X., (2020). Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors appli¬cation. Ind. Crops Prod. 145 (2020) 112100, DOI: 10.1016/j.indcrop.2020.112100

Taer, E., Apriwandi., Yusriwandi., Mustika, W.S., Zulkifli., Taslim, R., Sugianto, Kurniasih B., Agus¬tino., Dewi, P. (2018). Comparative study of CO2 and H2O activation in the synthesis of carbon elec¬trode for supercapacitors. AIP Conf. Proc. 030036, 10.1063/1.5021229

Romero-rangel, C., Guillen-lopez, A., Mejía-men¬doza, L.M., Robles, M., Espinosa-torres, N.D., Mu¬niz, j., (2019). Approaches on the understanding of nanoporous carbon reactivity with polyatomic ions. Appl. Surf. Sci., vol. 495, 143392, DOI: 10.1016/j. apsusc.2019.07.134

Yahya, M.A., Al-qodah, Z., Ngah, C.W.Z, (2015). Agricultural bio-waste materials as potential sustain¬able precursors used for activated carbon produc¬tion: A review. Renew. Sustain. Energy Rev., vol. 46, 218–235, DOI: 10.1016/j.rser.2015.02.051

Wei, X., Wei, J., Li, Y., Zou, H., (2019). Robust hi¬erarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J. Pow¬er Sources, vol. 414, 13–23, DOI: 10.1016/j.jpow¬sour.2018.12.064

Xue, M., Lu, W., Chen, C., Tan, Y., Li, B., Zhang, C., (2019). Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries. Mater. Res. Bull., vol. 112, 269–280, DOI: 10.1016/j.materresbull.2018.12.035

Mitravinda, T., Nanaji, K., Anandan, S., Jyothirmayi, A., Chakravadhanula, V.S.K., Sharma, C.S., Rao, T.N., (2018). Facile Synthesis of Corn Silk Derived Nanoporous Carbon for an Improved Supercapac¬itor Performance. J. Electrochem. Soc., vol. 165, 3369–3379, DOI: 10.1149/2.0621814jes

Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S.K., Grace, A.N., (2019). Natural biomass derived hard carbon and activated carbons as electrochemical superca¬pacitor electrodes. Sci. Rep., vol. 9, 16315, DOI: 10.1038/s41598-019-52006-x

Taer, E., Taslim, R., Mustika, W.S., Nurjanah, S., Yani, R.I., Sari, Y.P., Yusra, H., Awitdrus., Apri¬wandi., Agustino., Tahir, D., (2019). Preparation of mission grass flower-based activated carbon monolith electrode for supercapacitor application. Int. J. Electrochem. Sci., vol. 14, 7317–7331, DOI: 10.20964/2019.08.82

Kumar, K., Saxena, R.K., Kothari, R., Suri, D.K, Kau¬shik, K., Bohra, J.N, (1997). Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon, vol. 35, 1842–1844, DOI: 10./1016/S0008-6223(97)87258-2

Taer, E., Dewi, P., Syech, R., Taslim, R., Salomo., Susanti, Y., Purnama, A., Apriwandi., Agustino., Se¬tiadi, R.N., (2018). The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP Conf. Proc., vol. 1927, 030026, DOI: 10.1063/1.5021219

Song, X., Ma, X., Li, Y., Ding, L., Jiang, R., (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci., vol. 487, 189–197, DOI: 10.1016/j. apsusc.2019.04.277

Azwar, E., Adibah, W., Mahari, W., Huang, J., (2018). Transformation of biomass into carbon nanofiber for supercapacitor application: A review. Int. J. Hydro¬gen Energy, vol. 43, 20811–20821, DOI: 10.1016/j. ijhydene.2018.09.111

Taer, E., Taslim, R., Mustika, W.S., Kurniasih, B., Agustino., Afrianda, A., Apriwandi., (2018). Produc¬tion of an activated carbon from a banana stem and its application as electrode materials for supercapac¬itors. Int. J. Electrochem. Sci., vol. 13, 8428–8439, DOI: 10.20964/2018.09.55

Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., Wu, Y., Zhu, E., Chen, H., Shen, Z., Bao, B., Fu, S., (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci., vol. 181, 36–45, DOI: 10.1016/j.ces.2018.02.004

Chen, H., Guo, Y., Wang, F., Wang, G., Qi, P., Guo, X., Dai, B., (2017). An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater., vol. 32, 592–599, DOI: 10.1016/S1872-5805(17)60140-9

Farma, R., Deraman, M., Awitdrus, A., Talib, I.A., Taer, E., Basri, N.H., (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., vol. 132, 254–261, DOI: 10.1016/j.biortech.2013.01.044

Zhao, Y., Lu, M., Tao, P., Zhang, Y., Gong, X., Yang, Z., Zhang, G., Li, H., (2016). Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources, vol. 307, 391–400, DOI: 10.1016/j.jpowsour.2016.01.020

Huang, Y., Liu, Y., Zhao, G., Chen, J.Y., (2017). Sus¬tainable activated carbon fiber from sawdust by re¬activation for high-performance supercapacitors. J. Mater. Sci., vol. 52, 478–488, DOI: 10.1007/s10853- 016-0347-0

Ahmed, S., Rafat, M., Ahmed, A., (2018). Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv. Nat. Sci: Nanosci. Nanotechnol., vol. 9, 035008, DOI: 10.1088/2043- 6254/aad5d4

Ahmed, S., Parvaz, M., Johari, R., Rafat, M., (2018). Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater. Res. Express, vol. 5, 045601, DOI: 10.1088/2053-1591/aab924

Rawal, S., Joshi, B., Kumar, Y., (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochem¬ical supercapacitors. J. Energy Storage, vol. 20, 418–426, DOI: 10.1016/j.est.2018.10.009.

Sankar, S., Talha, A., Ahmed, A., Inamdar, A.I., Im, H., Bin, Y., Lee, Y., Young, D., Lee, S., (2019). Bio¬mass-derived ultrathin mesoporous graphitic carbon nano flakes as stable electrode material for high-per¬formance supercapacitors. Mater. Des., vol. 169, 107688, DOI: 10.1016/j.matdes.2019.107688.

Lota, G., Centeno, T.A., Frackowiak E., Stoeckli, F, (2008). Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electro¬chim. Acta, vol. 53, 2210–2216, DOI: 10.1016/j.elec¬tacta.2007.09.028.

Wang, W., Zhu, F., Jia, W., Wu, Y., Zhao, L., Yu, L., Chen, Y., Shen, Z, (2016). Electrochemical perfor¬mance of activated carbons with different specific surface area as supercapacitor electrode materials. Int. J. Electrochem. Sci., vol. 11, 6688 –6695, DOI: 10.20964/2016.08.40

Published
2021/01/12
Section
Original Scientific Paper