INFLUENCE OF APPLICATION OF SANDWICH PANEL ON STATIC AND DYNAMIC BEHAVIOUR OF FERRY RO-RO RAMP DOOR
Abstract
The implementation of a sandwich panel on the marine structure needs better knowledge of mechanical behaviour, primarily static and dynamic response. The static and dynamic response is investigated due to the application of a sandwich panel on the ferry ro-ro ramp door using finite element software ABAQUS. Five modification models using different sandwich thickness and stiffener configuration were compared using static analysis to analyze a comparison of structural strength and weight saving. Additionally, the dynamic response was also investigated due to debonding problem. The influence of debonding ratio, geometry, number of debonding, debonding depth, debonding location, and boundary condition was carried out. Debonding was estimated by using free vibration analysis where the Lanczos method for eigen values extraction was applied. Result of the static analysis showed that Model C caused an increase in strength to weight ratio compared to the existing model. Furthermore, the natural frequency was being calculated as modal parameters to investigate the debonding problem. The natural frequency of the debonded model decreased due to discontinuity in the damaged area. The dynamic response using natural frequency change can be performed as a structural health monitoring technique.
References
Yang, J.S., Ma, L., Schmidt, R., Qi, G., Schröder K.U., Xiong, J., Wu, L.Z. (2016). Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency. Composite Structures, vol. 148, 85–96, DOI: 10.1016/j.compstruct.2016.03.056
Sujiatanti, S.H., Zubaydi, A., Budipriyanto, A. (2018). Finite Element Analysis of Ship Deck Sandwich Panel. Applied Mechanics and Materials, vol. 874, 134- 139, DOI: 10.4028/www.scientific.net/AMM.874.134
Tuswan, Abdullah, K., Zubaydi, A., Budipriyanto, A. (2019). Finite-element Analysis for Structural Strength Assessment of Marine Sandwich Material on Ship Side-shell Structure. Materials Today: Proceedings, vol. 13, no. 1, 109–11, DOI: 10.1016/j.matpr.2019.03.197
Ramakrishnan, K.V., Kumar D.P.G. (2016). Applications of Sandwich Plate System for Ship Structures. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 83-90.
Mamalis, A. G., Spentzas, K. N., Pantelelis, N. G., Manolakos, D. E., Ioannidis, M. B. (2008). A new hybrid concept for sandwich structures. Composite Structures, vol. 83, no. 4, 335–340, DOI: 10.1016/j. compstruct.2007.05.002
Savin-Barcan, M., Beznea, E.F., Chirica, I. (2018). Influence of fabrication imperfections on dynamic response of a sandwich composite panel of a ship deck structure. IOP Conference Series: Materials Science and Engineering, vol. 400, 1-6, DOI:10.1088/1757- 899X/400/3/032008
Tuswan, Zubaydi, A., Budipriyanto, A., Sujiatanti, S.H. (2018). Comparative study on ferry ro-ro’s car deck structural strength by means of application of sandwich materials. Proceedings of the 3rd International Conference on Marine Technology (SENTA), vol. 1, p. 87-96.
Tuswan, Zubaydi, A., Piscesa, B., Ismail, A. (2020). Dynamic characteristic of partially debonded sandwich of ferry ro-ro’s car deck: a numerical modelling. Open Engineering, vol. 10, 424-433, DOI: 10.1515/ eng-2020-0051
Tuswan, Zubaydi, A., Piscesa, B., Ismail, A., Ilham, M.F. (2020). Free vibration analysis of interfacial debonded sandwich of ferry ro-ro’s stern ramp door. Procedia Structural Integrity, vol. 27C, 22-29. DOI: 10.1016/j.prostr.2020.07.004
Birman, V., Kardomateas, G.A. (2018). Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, vol. 142, 221-240, DOI: 10.1016/j.compositesb.2018.01.027
Burlayenko, V.N., Sadowski, T. (2018). Linear and Nonlinear Dynamic Analyses of Sandwich Panels with Face Sheet-to-Core Debonding. Shock and Vibration, vol. 2018, 1-26, DOI: 10.1155/2018/5715863
Bragagnolo, G., Crocombe, A.D., Ogin, S.L., Mohagheghian, I., Sordon, A., Meeks, G., Santoni, C. (2020). Investigation of skin-core debonding in sandwich structures with foam cores. Materials & Design, vol. 186, 1-10, DOI: 10.1016/j.matdes.2019.108312
Chen, Y., Hou, S., Fu, K., Han, X., Ye, L., (2017). Low-velocity impact response of composite sandwich structures: modelling and experiment. Composite Structures, vol. 168, 322–334, DOI: 10.1016/j. compstruct.2017.02.064
Fatt, M.S.H., Sirivolu, D. (2017). Marine composite sandwich plates under air and water blasts. Marine Structures, vol. 56, 163–185, DOI: 10.1016/j.marstruc.2017.08.004
Burlayenko, V.N., Sadowski, T. (2010). Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates. International Journal Non-Linear Mechanics, vol. 45, 959-968, DOI: 10.1016/j.ijnonlinmec.2009.07.002
Burlayenko, V.N., Sadowski, T. (2011). Dynamic behaviour of sandwich plates containing single/ multiple debonding. Computational Materials Science, vol. 50, 1263–1268, DOI: 10.1016/j.commatsci.2010.08.005
Yang, C., Hou, X.B., Wang, L., Zhang, X.H. (2016). Applications of different criteria in structural damage identification based on natural frequency and static displacement. Science China Technological Sciences, vol. 59, 1746–1758, DOI: 10.1007/s11431-016- 6053-y
Zhao, B., Xu, Z., Kan, X., Zhong, J., Guo, T. (2016). Structural damage detection by using single natural frequency and the corresponding mode shape. Shock and Vibration, vol. 2016, 1-8, DOI: 10.1155/2016/8194549
Ismail, A., Zubaydi, A., Piscesa, B., Ariesta, R.C., Tuswan. (2020). Vibration-based damage identification for ship sandwich plate using finite element method. Open Engineering, vol. 10, 744 – 752, DOI: 10.1515/eng-2020-0086
Kaveh, A., Zolghadr, A. (2015). An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes. Advances in Engineering Software, vol. 80, 93-100, DOI: 10.1016/j.advengsoft.2014.09.010
Elshafey, A.A., Marzouk, H., Haddara, M.R. (2011). Experimental damage identification using modified mode shape difference. Journal of Marine Science and Application, vol. 10, 150–155, DOI: 10.1007/ s11804-011-1054-5
Zhu, K., Chen, M., Lu, Q., Wang, B., Fang, D. (2014). Debonding detection of honeycomb sandwich structures using frequency response functions. Journal of Sound and Vibration, vol. 333, no. 21, 5299–5311, DOI: 10.1016/j.jsv.2014.05.023
Burlayenko, V.N., Sadowski, T. (2014). Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modelling. Composite Structures, vol. 108, 354-366, DOI: 10.1016/j.compstruct.2013.09.042
DNV-GL. Steel sandwich panel construction, from www.dnvgl.com/rules-standards, accessed on 2020- 05-05.
DNV-GL. Rules for Classification High Speed and Light Craft, from www.dnvgl.com/rules-standards, accessed on 2020-05-06.
Dassault Systemes Simulia Corp. Abaqus Analysis User Guide, from: http://ivt-abaqusdoc.ivt.ntnu. no:2080/v6.14/books/usb/default.html, accessed on 2020-05-07.
Burlayenko, V.N., Sadowski, T. (2011). Numerical Modelling of Sandwich Plates with Partially Dedonded Skin-to-Core Interface for Damage Detection, The 8th International Conference on Structural Dynamics, p. 1-8.
Lou, J., Wu, L., Ma, L., Xiong, J., Wang, B. (2014). Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure. Composites Part B: Engineering, vol. 62, 73– 87, DOI: 10.1016/j.compositesb.2014.02.012