ANALYSIS OF MEANS AND METHODS OF STRESS-STRAIN STATE CONTROL OF STRUCTURES DURING OPERATION
Abstract
This article defines the basic set of means and methods of the structural health monitoring of metal structures and structures from polymer composite materials (PCMs) used in the construction and aviation industry. The analysis of means and methods of strain-stress state control of a structure during operation (detection of defects and crack growth) and their comparison is provided.
References
Aghayan, G. M., Grigoryan, A. A., Shikin, E. V., Shikina, G. E. (2014). On the stages of the crisis process and crises that can be prevented. Moscow University Bulletin. Series 21. Management (State and Society), 4, 22-44. https://cyberleninka.ru/article/n/ob-etapah-krizisnogo-protsessa-i-krizisah-kotorye-mozhno-predotvratit
Maksakovsky, V. P. (2008). Geographical Picture of the World. In 2 books. Book I. General Characteristics of the World. 4th ed. Drofa, Moscow.
Naumova, T. V. (2009). Concept of global problems in the I.T. Frolov’s philosophy. Vestnik of the Orenburg State University, 7(101), 81-87. http://vestnik.osu.ru/2009_7/14.pdf
Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C., Costa, J. C. W. A. (2017). Agglomerative concentric hypersphere clustering applied to structural damage detection. Mechanical Systems and Signal Processing, 92, 196-212. doi: 10.1016/j.ymssp.2017.01.024
Barontini, A., Masciotta, M. G., Ramos, L. F., Amado-Mendes, P., Lourenço, P. B. (2017). An overview on nature-inspired optimization algorithms for structural health monitoring of historical buildings. Procedia Engineering, 199, 3321-3325. doi: 10.1016/J.PROENG.2017.09.439
Finotti, R. P., Barbosa, F. S., Cury, A. A., Gentile, C. (2017). A novel natural frequency-based technique to detect structural changes using computational intelligence. Procedia Engineering, 199, 3314-3319. doi: 10.1016/J.PROENG.2017.09.438
Serov, A. (2017). Cognitive sensor technology for structural health monitoring. Procedia Structural Integrity, 5, 1160-1167. doi: 10.1016/J.PROSTR.2017.07.027
Yi, T. H., Huang, H. B., Li, H. N. (2017). Development of sensor validation methodologies for structural health monitoring: A comprehensive review. Measurement, 109, 200-214. doi: 10.1016/J.MEASUREMENT.2017.05.064
Papa, U., Russo, S., Lamboglia, A., Del Core, G., Iannuzzo, G. (2017). Health structure monitoring for the design of an innovative UAS fixed wing through inverse finite element method (iFEM). Aerospace Science and Technology, 69, 439-448. doi: 10.1016/J.AST.2017.07.005
Dong, C. Z., Ye, X. W., Jin, T. (2018). Identification of structural dynamic characteristics based on machine vision technology. Measurement: Journal of the International Measurement Confederation, 126, 405-416. doi: 10.1016/J.MEASUREMENT.2017.09.043
Abdaoui, A., El Fouly, T. M., Ahmed, M. H. (2017). Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring. Journal of Network and Computer Applications, 83, 181-189. doi: 10.1016/j.jnca.2017.01.004
Krichen, D., Abdallah, W., Boudriga, N. (2017). On the design of an embedded wireless sensor network for aircraft vibration monitoring using effcient game theoretic based MAC protocol. Ad Hoc Networks, 61, 1-15. doi: 10.1016/j.adhoc.2017.03.004
Lourens, E., Fallais, D. J. M. (2017). On the use of equivalent forces for structural health monitoring based on joint input-state estimation algorithms. Procedia Engineering, 199, 2140-2145. doi: 10.1016/J.PROENG.2017.09.152
Zhang, Z., Luo, Y. (2017). Restoring method for missing data of spatial structural stress monitoring based on correlation. Mechanical Systems and Signal Processing, 91, 266-277. doi: 10.1016/J.YMSSP.2017.01.018
Nagarajaiah, S. (2017). Sparse and low-rank methods in structural system identification and monitoring. Procedia Engineering, 199, 62-69. doi: 10.1016/J.PROENG.2017.09.153
Loutas, T. H., Bourikas, A. (2017). Strain sensors optimal placement for vibration-based structural health monitoring. The effect of damage on the initially optimal configuration. Journal of Sound and Vibration, 410, 217-230. doi: 10.1016/J.JSV.2017.08.022
Roth, W., Giurgiutiu, V. (2017). Structural health monitoring of an adhesive disbond through electromechanical impedance spectroscopy. International Journal of Adhesion and Adhesives, 73, 109-117. doi: 10.1016/J.IJADHADH.2016.11.008
Di Lorenzo, E., Manzato, S., Peeters, B., Marulo, F., Desmet, W. (2017). Structural health monitoring strategies based on the estimation of modal parameter. Procedia Engineering, 199, 3182-3187.
Cardoso, R., Cury, A., Barbosa, F. (2017). A robust methodology for modal parameters estimation applied to SHM. Mechanical Systems and Signal Processing, 95, 24-41.
Chen, J. G., Buyukozturk, O. (2017). A symmetry measure for damage detection with mode shapes. Journal of Sound and Vibration, 408, 123-137. doi: 10.1016/j.jsv.2017.07.022
Furtmuller, T., Adam, C. (2017). Compensation of temperature effects in long-term monitoring of a highway bridge located in the Austrian Alps. Procedia Engineering, 199, 2078-2083. doi: 10.1016/j.proeng.2017.09.477
Sarda-Espinosa, A., Subbiah, S., Bartz-Beielstein, T. (2017). Conditional inference trees for knowledge extraction from motor health condition data. Applications of Artificial Intelligence, 62, 26-37. doi: 10.1016/j.engappai.2017.03.008
Li, D. (2016). Discussion of model reduction and reservation. Procedia Engineering, 188, 354-362. doi: 10.1016/j.proeng.2017.04.495
Smith, C. B., Hernandez, E. M. (2017). Exploiting spatial sparsity in vibration-based damage detection. Procedia Engineering, 199, 1925-1930. doi: 10.1016/J.PROENG.2017.09.284
Turnbull, H., Omenzetter, P. (2017). Fuzzy finite element model updating of a laboratory wind turbine blade for structural modification detection. Procedia Engineering, 199, 2274-2281. doi: 10.1016/j.proeng.2017.09.258
Huang, Y., Beck, J.L., Li, H. (2017). Hierarchical sparse Bayesian learning for structural damage detection: Theory, computation and application. Safety, 64, 37-53. doi: 10.1016/J.STRUSAFE.2016.09.001
Sepe, V., Valente, C., Zuccarino, L., Siano, R., Iezzi, F. (2017). Identification of frame models under unmeasured base motion: experimental validation. Procedia Engineering, 199, 1008-1014.
Kim, W., Yi, J. H., Kim, J. T., Park, J. H. (2017). Vibration-Based Structural Health Assessment of a Wind Turbine Tower Using a Wind Turbine Model. Procedia Engineering, 188, 333-339. doi: 10.1016/j.proeng.2017.04.492
Sagar, R. V. (2017). Acoustic emission characteristics of reinforced concrete beams with varying percentage of tension steel reinforcement under flexural loading. Studies in Construction Materials, 6, 162-176. doi: 10.1016/j.cscm.2017.01.002
Sternini, S., Quattrocchi, A., Montanini, R., Pau, A., Di Scalea, F. L. (2017). A match coefficient approach for damage imaging in structural components by ultrasonic synthetic aperture focus. Procedia Engineering, 199, 1544-1549. doi: 10.1016/j.proeng.2017.09.503
Park, J., Lee, M. J., Jeon, J. Y., Jung, H. K., Park, G., Kang, T., Han, S. W. (2017). Compressive sensing approaches for condition monitoring and laser-scanning based damage visualization. Procedia Engineering, 188, 80-88. doi: 10.1016/J.PROENG.2017.04.460
Kullaa, J. (2017). Development of virtual sensors to increase the sensitivity to damage. Procedia Engineering, 199, 1937-1942. doi: 10.1016/j.proeng.2017.09.290
Lize, E., Rebillat, M., Mechbal, N., Bolzmacher, C. (2017). Estimation of the temperature field on a composite fan cowl using the static capacity of surface-mounted piezoceramic transducers. IFAC-PapersOnLine, 50(1), 11689-11694. doi: 10.1016/J.IFACOL.2017.08.1685
Berdnik, M. M., Vishnevskaya, N. S. (2014). Building constructions: Training manual. 2nd ed. USTU, Ukhta.
Gabrusenko, V. V. (2012). Effect of factory technology defects on strength, rigidity and crack resistance of concrete structures. Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk.
Ignatovich, S., Karuskevich, M., Bouraou, N., Krasnopolskiy, V. (2011). Prospects of the application of the onboard automated fatigue life exhaustion monitoring systems for aircraft structures. Vestnik of TNTU, 2, 136-143. http://elartu.tntu.edu.ua/bitstream/123456789/1445/2/TNTUB_2011_Special1-Ignatovich_S_Karuskevich_M_Bouraou_N-Prospects_of_the_application_of_the__136.pdf
Volkswagen AG. (n.d.). Virtual technologies. https://www.volkswagenag.com/en/group/research/virtual-technologies.html
Glass. (n.d.). https://www.google.ru/glass/start/
Medvedskiy, A. L., Martirosov, M. I., Khomchenko, A. V., Dedova, D. V. (2020). Assessment of the strength of a composite package with internal defects according to various failures criteria under the influence of unsteady load. Periodico Tche Quimica, 17(35), 1218-1230. http://www.deboni.he.com.br/arquivos_jornal/2020/35/100_MEDVEDSKIY_pgs_1218_1230.pdf
Sadritdinov, A. R., Khusnullin, A. G., Psyanchin, A. A., Zakharova, E. M., Zakharov, V. P. (2020). Physical and mechanical and thermophysical properties of polymer composites based on recycled polypropylene filled with rice husk. Periodico Tche Quimica, 17(35), 703-712. http://www.deboni.he.com.br/arquivos_jornal/2020/35/60_SADRITDINOV_pgs_703_712.pdf
Government of the Russian Federation. (2003). On the unified state system for the prevention and elimination of emergency situations. https://www.mchs.gov.ru/dokumenty/768
Federal Agency on Technical Regulating and Metrology. (2005). Safety in Emergencies. Structured System for Monitoring and Control of Building/Construction Engineering Equipment. General Requirements. https://16.mchs.gov.ru/documents/territorialnoe-zakonodatelstvo/smis/gost-r-22-1-12-2005