MODELING SOLAR POTENTIAL IN SEMARANG, INDONESIA USING ARTIFICIAL NEURAL NETWORKS
Abstract
Artificial neural network shows a good performance in predicting renewable energy. Many versions of Artificial Neural Network (ANN) models have been implemented to predict solar potential. This study aims to determine the monthly solar radiation in Semarang, Indonesia using ANN, and to visualize monthly solar irradiance as a map of the solar system of Semarang. This research applied the perceptron multi-layer ANN model, with 7 variables as input data of network learning, which were maximum temperature, relative humidity, wind speed, rainfall, longitude, latitude, and elevation. The input data set was obtained from a NASA normalized geo-satellite database website with a 5-year average daily score. Network training used backpropagation with one of the input layers, two of hidden layers, and one of the output layer. The performance of the model during the analysis of mean absolute percentage error was highly accurate (6.6%) when 12 and 10 neurons were respectively installed in the first and second hidden layers. The result was presented in a monthly map of solar potential within the geographical information system (GIS) environment. The result showed that ANN was able to be one of the alternatives to estimate solar irradiance data. The sun irradiance map can be used by the government of Semarang City to provide information about the solar energy profile for the implementation of the solar energy system.
References
Semarang Central Statistics Agency, “Semarang Municipality in Figures 2018,” 2018.
Indonesia, “Blueprint Pengelolaan Energi Nasional,” 2006.
H. Kutucu and A. Almryad, “Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model,” in IEEE First International Conference on Data Stream Mining & Processing, 2016, no. August, pp. 356–359.
P. Neelamegam and V. A. Amirtham, “Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms,” Journal of Applied Research and Technology, vol. 14, no. 3, pp. 206–214, 2016.
D. A. Fadare, “Modelling of solar energy potential in Nigeria using an artificial neural network model,” Applied Energy, vol. 86, no. 9, pp. 1410–1422, 2009.
A. Qazi, H. Fayaz, A. Wadi, R. Gopal, N. A. Rahim, and W. Ahmed, “The artificial neural network for solar radiation prediction and designing solar systems : a systematic literature review,” Journal of Cleaner Production, vol. 104, pp. 1–12, 2015.
O. N. Mensour, B. El Ghazzani, B. Hlimi, and A. Ihlal, “Modeling of solar energy potential in Souss-Massa area-Morocco , using intelligence Artificial Neural Networks (ANNs),” Energy Procedia, vol. 139, pp. 778–784, 2017.
E. F. Alsina, M. Bortolini, M. Gamberi, and A. Regattieri, “Artificial neural network optimisation for monthly average daily global solar radiation prediction,” Energy Conversion and Management, vol. 120, pp. 320–329, 2016.
T. Khatib, A. Mohamed, K. Sopian, and M. Mahmoud, “Assessment of Artificial Neural Networks for Hourly Solar Radiation Prediction,” International Journal of Photoenergy, vol. 2012, 2012.
M. Demirtas, M. Yesilbudak, and Sagiroglu, “Prediction of solar radiation using meteorological data,” in Proc Int Conf on Renewable Energy Research and Applications, Nagasaki, Japan, 2012, pp. 1–5.
A. N. Celik and T. Muneer, “Neural network based method for conversion of solar radiation data,” Energy Convers Manage, vol. 67, no. 1, pp. 17–24, 2013.
S. Pereira, P. Canhoto, R. Salgado, and M. João, “Development of an ANN based corrective algorithm of the operational ECMWF global horizontal irradiation forecasts,” Solar Energy, vol. 185, no. April, pp. 387–405, 2019.
M. Bou-rabee, S. A. Sulaiman, M. S. Saleh, and S. Marafied, “Using arti fi cial neural networks to estimate solar radiation in Kuwait,” Renewable and Sustainable Energy Reviews, vol. 72, no. September 2015, pp. 434–438, 2017.
B. Amrouche and X. Le Pivert, “Artificial neural network based daily local forecasting for global solar radiation,” Applied Energy, vol. 130, no. 2014, pp. 333–341, 2014.
A. Assi, M. Al Shamisi, and M. Jama., “Prediction of Monthly Average Daily Global Solar Radiation in Al Ain City – UAE Using Artificial Neural Networks Prediction of Monthly Average Daily Global Solar Radiation in Al Ain City – UAE Using Artificial Neural Networks,” Advances in Energy Planning, Environmental Education and Renewable Energy Sources, no. January, 2015.
B. M. Alluhaidah, S. Ieee, S. H. Shehadeh, S. Ieee, and F. Ieee, “Most Influential Variables for Solar Radiation Forecasting Using Artificial Neural Networks,” in 2014 Electrical Power and Energy Conference, 2014, pp. 71–75.
P. Neelamegam and V. Arasu, “Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms,” Revista Mexicana de Trastornos Alimentarios, vol. 14, no. 3, pp. 206–214, 2016.
K. Ermis, A. Midilli, I. Dincer, and M. A. Rosen, “Artificial neural network analysis ofworld green energy use,” Energy Policy2, vol. 35, no. 17, pp. 31–43, 2007.
A. Ouammi, D. Zejli, H. Dagdougui, and R. Benchrifa, “Artificial neural network analysis of Moroccan solar potential,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4876–4889, 2012.
M. Rumbayan, A. Abudureyimu, and K. Nagasaka, “Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system,” Renewable and Sustainable Energy Reviews, vol. 16, no. 3, pp. 1437–1449, 2012.
A. Sozen, E. Arcaklioglu, and M. Ozalp, “Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data,” Energy Conversion and Management, vol. 45, pp. 3033–3052, 2004.
Y. Charabi, M. Ben, H. Rhouma, and A. Gastli, “GIS-Based Estimation of Roof-PV Capacity & Energy Production for the Seeb Region in Oman,” in 2010 IEEE International Energy Conference, 2010, vol. 2, pp. 41–44.
A. Mellit, S. A, and Kalogirou, “Artificial intelligence techniques for photovoltaic applications : A review,” Progress in Energy and Combustion Science, vol. 34, pp. 574–632, 2008.
A. Mellit and A. M. Pavan, “A 24-h forecast of solar irradiance using artificial neural networks: application for performance prediction of a grid-connected PV plant at Trieste, Italy,” Solar Energy, vol. 84, no. 8, pp. 7–21, 2010.
A. K. Yadav and S. S. Chandel, “Solar radiation prediction using Artificial Neural Network techniques: A review,” Renewable Energy, 2014.