• Bernardus Plasenta Previo Caesar Universitas Sebelas Maret, Department of Mechanical Engineering, Surakarta, Indonesia
  • Muhammad Faiz Dzulfikar Universitas Sebelas Maret, Department of Mechanical Engineering, Surakarta, Indonesia
  • Aditya Rio Prabowo Universitas Sebelas Maret, Department of Mechanical Engineering, Surakarta, Indonesia
  • Pandu Sandi Pratama Dong-A University, Cobot Co., Industry Research Building Room 121, Busan, South Korea
  • Joung Hyung Cho Pukyong National University, Department of Industrial Design, Busan, South Korea
Keywords: auto checking hardness machine, finite element method, aluminum frame design, displacement value, maximum stress, safety factor


A hardness-checking machine is a crucial tool in engineering study, especially in the mechanical and manufacturing process. It usually used to measure, calibrate, and standardize the quality of the product. It is based on the field problem in Akebono Brake Astra Indonesia for using more manual tools to achieve product demands. It is considering those issues, the development of a modified hardness checking tool from manual operation to automatic operation. Using automatic operation is useful in time and savings for other manual tools. The automatic tool applies the 3-axes system mechanism using Festo linear actuator with the servo motor. The testing capacity of automatic devices is equal to more manual devices. The frame of the auto-checking hardness machine is assessed by applying load variations. From the other similar work of auto checking hardness machine, this paper provides the comparison of various aluminum frame types based on different tensile strength and cross-sectional area values. The other analysis is calculating the base plate for hardness testing. There are 9 points of testing to calculate the use of linear guides for the base plate. The results are the excellent value of tensile strength has good results of displacement and maximum stress.


Fedyukov, V., Chernov, V., Chernova, M. (2020). Strength of aged wood in old constructions. Journal of Applied Engineering Science, vol. 18, no. 1, 114 – 119, DOI:

Maljković, M., Blagojević, I., Popović, V., Stamenković, D. (2018). Impact of the damper characteristics on the behavior of suspension system and the whole vehiclе. Journal of Applied Engineering Science, vol. 16, no. 3, 349-357, DOI: jaes16-17342

Prabowo, A.R., Bahatmaka, A., Sohn, J.M. (2020). Crashworthiness characteristic of longitudinal deck structures against identified accidental action in marine environment: a study case of ship–bow collision. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 11, 584, DOI:

Sakuri, S., Surojo, E., Ariawan, D., Prabowo, A.R. (2020). Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments. Composites Communication, vol. 21, 100419, DOI: coco.2020.100419

Ariawan, D., Rivai, T.S., Surojo, E., Hidayatulloh, S., Akbar, H.I., Prabowo, A.R. (2020). Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF. Alexandria Engineering Journal, vol. 59, no. 5, 3981-3989, DOI: aej.2020.07.005

Afridi, B.Z., Shahzadam K., Naqash, M.T. (2017). Mechanical properties of polypropylene fibers mixed cement-sand mortar. Journal of Applied Engineering Science, vol. 17, no. 2, 116 – 125, DOI: https://doi. org/10.5937/jaes17-19092

Prabowo, A.R., Cahyono, S.I., Sohn, J.M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, vol. 9, no. 5, 320-327, DOI: taml.2019.05.002

Guo, B., Zhang, L., Cao, L., Zhang, T., Jiang, F., Yan, L. (2018). The correction of temperature-dependent Vickers hardness of cemented carbide base on the developed high-temperature hardness tester. Journal of Materials Proceeding Technology, vol. 255, 426-433, DOI:

Caesar, B.P.P., Hazimi, H., Sukanto, H., Prabowo, A.R. (2020). Development of novel design and frame structural assessment on Mitutoyo’s Auto Checking Hardness Machine using reverse engineering approach: series HR-522 hardness tester. Journal of Engineering Science and Technology, vol. 15, no. 2, 1296-1318, DOI:

Batan, I.M.L. (2012). Desain Produk. 1st Edition, Guna Widya, Surabaya (in Indonesian).

Husain, Z., Jan, H. (2019). Establishing a simulation model for optimizing the efficiency of the CNC machine using a reliability-centered maintenance approach. International Journal of Modeling, Simulation, and Scientific Computing, vol. 10, no. 6, 1950034, DOI:

TA Instruments. Automated Hardness Tester Brochure, from, accessed on 2020-12-08.

Wang, W., Zhang, Y., Li, C. (2017). Dynamic reliability analysis of linear guides in positioning precision. Mechanism and Machine Theory, vol. 116, 451 – 464, DOI:

Hong, C.C., Chang, C.L., Lin, C.Y. (2016). Static structural analysis of great five-axis turning-milling complex CNC machine. Engineering Science and Technology, an International Journal, vol. 19, no. 4, 1971-1984, DOI: jestch.2016.07.013

Francoisa, P., Palit, A., Gerbino, S., Ceglarek, D. (2019). A novel hybrid shell element formulation (QUAD+ and TRIA+): A benchmarking and comparative study. Finite Elements in Analysis and Design, vol. 166, 103319, DOI:

Hidayat, T., Nazaruddin, N., Syafri S. (2017). Perancangan dan analisis statik chassis kendaraan shell eco marathon tipe urban concept. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, vol. 4, no. 2, 1-6, DOI: - (in Indonesian).

Prabowo, A.R., Putranto, T., Sohn, J.M. (2019). Simulation of the behavior of a ship hull under grounding: Effect of applied element size on structural crashworthiness. Journal of Marine Science and Engineering, vol. 7, no. 8, 270, DOI: https://doi. org/10.3390/jmse7080270

Kõrgesaar, M, (2015). Modeling ductile fracture in ship structures with shell element. Aalto University, Espoo.

Buldgen, L., Sourne, H.L., Besnard, N., Rigo, P. (2012). Extension of the super-elements method to the analysis of oblique collision between two ships. Marine Structures, vol. 29, no. 1, 22-57, DOI: https://

Lee, Y.W., Woertz, J.C., Wierzbicki, T. (2004). Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification. International Journal of Mechanical Sciences, vol. 46, no. 5, 751-781, DOI: ijmecsci.2004.05.004

Simonsen, B.C., Lauridsen, L.P. (2000). Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere. International Journal of Impact Engineering, vol. 24, no. 10, 1017-1039, DOI:

Muttaqie, T., Thang D.Q., Prabowo, A.R., Cho, S.R., Sohn, J.M. (2019). Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure. Structural Engineering and Mechanics,vol. 70, no. 4, 431-443, DOI: sem.2019.70.4.431

Misumi. MISUMI Automation Components, from mech/, accessed on 2020-08-20.

El-Sammane, H., Ashry, A.H., Abou-leila, M., Arafa, W., Ahmad, U. (2012). A nuclear tester for micro-hardness measurement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 290, 39- 42, DOI:

Beer, F.P., Johnston, E.R., Dewolf, J.T., Mazurek, D.F. (2012). Mechanics of Materials, 6th edition. McGraw-Hill, New York.

Dieter, G.E., Linda C.S. (2021). Engineering Design, 6th edition. McGraw-Hill, New York.

Caesar, B.P.P., Istanto, I., Pratama, P.S., Cho, J.H., Prabowo, A.R., (2020). Improvement of auto checking hardness machine using several material series of aluminum structural frame: Case study on mitutoyo hr-522 hardness tester. Procedia Structural Integrity, vol. 27, 117-124, DOI:

Wredenberg, F., Larsson, P. (2009). Scratch testing of metals and polymer: Experiments and numerics. Wear, vol. 266, no. 1-2, 76-83, DOI: https://doi. org/10.1016/j.wear.2008.05.014

Mutalib, A.A., Mussa, M.H., Abdulghafoor A.M. (2018). Finite element analysis of composite plate girders with a corrugated web. Journal of Engineering Science and Technology, vol. 13, no. 9, 2978- 2994, DOI: -

Marjanović, M., Marković, N., Damnjanović, E., Cvetković, R. (2020). Three-dimensional stress analysis and design of cross-laminated timber panels using full-layerwise-theory-based finite element method. Thin-Walled Structures, vol. 157, 107156, DOI:

Castaldo, P., Gino, D., Bertagnoli, G., Mancini, G. (2018). Partial safety factor for resistance model uncertainties in 2D non-linear finite element analysis of reinforced concrete structures. Engineering Structures, vol. 176, 746-762, DOI: https://doi. org/10.1016/j.engstruct.2018.09.041

Kefal, A., Tessler, A., Oterkus, E. (2017). An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Composite Structures, vol. 179, 514-540, DOI: compstruct.2017.07.078

Prabowo, A.R., Bae, D.M., Cho, J.H., Sohn, J.M. (2017). Analysis of structural crashworthiness and estimating safety limit accounting for ship collisions on strait territory. Latin American Journal of Solids and Structures, vol. 14, no. 8, 1594-1613, DOI:

Vogel, D., Wehmeyer, M., Kebbach, M., Heyer, H., Bader, R. (2021). Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis. Journal of the Mechanical Behavior of Biomedical Materials, vol. 113, 104115, DOI: jmbbm.2020.104115

Original Scientific Paper