AN EXPERIMENTAL INVESTIGATION OF THE EFFECT OF NATURAL FIBER TREATMENT AND MARINE ENVIRONMENT ON CANNABIS SATIVA/EPOXY LAMINATES

  • K N CHETHAN Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, INDIA https://orcid.org/0000-0002-9399-685X
  • Sharun Hegde Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, INDIA.
  • Rajesh Kumar Assistant Professor, Swami Vivekananada Subharti University, Meerut, Uttar Pradesh-250005
  • Padmaraj N H Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, INDIA. https://orcid.org/0000-0001-6626-2765
Keywords: treated, untreated, ageing, sea-water, modulus

Abstract


Materials have helped in evolving technology to a great extent. Composites have replaced conventional metals/non-metals because of their lightweight. Natural Fibres have been need of the hour owing to environmental concerns and ease of availability. In this work, Cannabis Sativa fibers were treated with 5% Potassium Hydroxide solution. The laminates were prepared by the Compression Moulding technique by reinforcing treated and untreated fibers with an epoxy matrix material. To access the durability of natural fiber composites in the marine environment, prepared laminates were aged in seawater for 150 days. Tensile, flexural and moisture absorption behavior tests have been performed to estimate the durability in seawater. The data obtained have been compared with pristine treated and untreated fiber reinforced samples. From the results, it has been observed that tensile and flexural behavior of untreated fiber reinforced composites were superior to a treated counterpart in both pristine and aged conditions.

References

[1] Ranga P, Singhal S, Singh I. A Review Paper on Natural Fiber Reinforced Composite 2014;3:467–9.
[2] Mallick PK. Fibre-reinforced composites materials, manufacturing and design. vol. 20. 2007. doi:10.1016/0010-4361(89)90651-4.
[3] Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int J Polym Sci 2015;2015. doi:10.1155/2015/243947.
[4] Ticoalu A, Aravinthan T, Cardona F. A review of current development in natural fiber composites for structural and infrastructure applications. South. Reg. Eng. Conf. 2010, SREC 2010 - Inc. 17th Annu. Int. Conf. Mechatronics Mach. Vis. Pract. M2VIP 2010, 2010.
[5] May-Pat A, Valadez-González A, Herrera-Franco PJ. Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 2013. doi:10.1016/j.polymertesting.2013.06.006.
[6] Shalwan A, Yousif BF. In State of Art : Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 2013;48:14–24. doi:10.1016/j.matdes.2012.07.014.
[7] Awwad E, Mabsout M, Hamad B, Talal M, Khatib H. Studies on fiber-reinforced concrete using industrial hemp fibers. Constr Build Mater 2020;35:710–7. doi:10.1016/j.conbuildmat.2012.04.119.
[8] Huaran H, Hao L, Guanghui D, Fei Y, Gang D, Yang Y, et al. Fiber and seed type of hemp ( Cannabis sativa L .) responded differently to salt-alkali stress in seedling growth and physiological indices. Ind Crop Prod 2019;129:624–30. doi:10.1016/j.indcrop.2018.12.028.
[9] Gohil P, Patel K, Chaudhary V. Natural fiber-reinforced polymer composites: a comprehensive study on machining characteristics of hemp fiber-reinforced composites. Elsevier Ltd; 2019. doi:10.1016/B978-0-08-102426-3.00002-3.
[10] Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 2012. doi:10.1016/j.progpolymsci.2012.04.003.
[11] Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites : In greening the 21st century materials world 2005;50:962–1079. doi:10.1016/j.pmatsci.2005.05.002.
[12] Ren B, Mizue T, Goda K, Noda J. Effects of fluctuation of fibre orientation on tensile properties of flax sliver-reinforced green composites. Compos Struct 2012. doi:10.1016/j.compstruct.2012.06.002.
[13] Pan Y, Zhong Z. A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption. Mech Mater 2015. doi:10.1016/j.mechmat.2015.02.001.
[14] Jayamani E, Hamdan S, Rahman R, Khusairy M. Investigation of Fiber Surface Treatment on Mechanical , Acoustical and Thermal Properties of Betelnut Fiber Polyester Composites. Procedia Eng 2014;97:545–54. doi:10.1016/j.proeng.2014.12.282.
[15] Boopathi L, Sampath PS, Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos Part B Eng 2012. doi:10.1016/j.compositesb.2012.05.002.
[16] Ramesh M, Sri Ananda Atreya T, Aswin US, Eashwar H, Deepa C. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng., 2014. doi:10.1016/j.proeng.2014.12.284.
[17] Shahzad A. Hemp fiber and its composites - A review. J Compos Mater 2012;46:973–86. doi:10.1177/0021998311413623.
[18] Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 2015;68:32–41. doi:10.1016/j.indcrop.2014.08.011.
[19] Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr Build Mater 2008. doi:10.1016/j.conbuildmat.2007.07.016.
[20] Hanegraaf MC, Biewinga EE, Van Der Bijl G. Assessing the ecological and economic sustainability of energy crops. Biomass and Bioenergy, 1998. doi:10.1016/S0961-9534(98)00042-7.
[21] FAO/ICAC. World apparel fiber consumption survey. World Appar Fiber Consum Surv 2013.
[22] Pejic BM, Kostic MM, Skundric PD, Praskalo JZ. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers 2008;99:7152–9. doi:10.1016/j.biortech.2007.12.073.
[23] Zegaoui A, Derradji M, Ma R, Cai W, Medjahed A. Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Mater Chem Phys 2018. doi:10.1016/j.matchemphys.2018.04.012.
[24] Liu W. The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Mater Chem Phys 2018. doi:10.1016/j.matchemphys.2018.06.040.
[25] Barari B, Omrani E, Moghadam AD, Menezes PL, Pillai KM, Rohatgi PK. Mechanical , Physical and Tribological Characterization of Nano- Cellulose Fibers Reinforced Bio-Epoxy Composites : An Attempt to Fabricate and Scale the ‘ Green ’ Composite. Carbohydr Polym 2016. doi:10.1016/j.carbpol.2016.03.097.
[26] Xu Y, Dayo AQ, Wang J, Wang A, Lv D, Zegaoui A, et al. Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fi bers reinforced composites using a novel in-situ generated curing agent. Mater Chem Phys 2018;203:293–301. doi:10.1016/j.matchemphys.2017.10.004.
[27] Latha PS, Rao MV, Raghavendra G, Ojha S. Evaluation of mechanical and tribological properties of bamboo – glass hybrid fiber reinforced polymer composite. J Ind Text 2015. doi:10.1177/1528083715569376.
[28] Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S. Characterization and properties of natural fi ber polymer composites : A comprehensive review. J Clean Prod 2018;172:566–81. doi:10.1016/j.jclepro.2017.10.101.
[29] Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y, Hassani FO, et al. Effect of surface modi fi cation on morphological , mechanical and thermal conductivity of hemp fi ber : Characterization of the interface of hemp – Polyurethane composite. Case Stud Therm Eng 2017;10:550–9. doi:10.1016/j.csite.2017.10.012.
[30] Padmaraj NH, Chethan KN, Utkarsh S, Banerjee S, Utkarsh. Influence of marine environment on mechanical properties of glass fiber reinforced composites. IOP Conf Ser Mater Sci Eng 2018;377. doi:10.1088/1757-899X/377/1/012132.
[31] Chilali A, Zouari W, Assarar M, Kebir H, Ayad R. Effect of water ageing on the load-unload cyclic behaviour of flax fibre-reinforced thermoplastic and thermosetting composites. Compos Struct 2017. doi:10.1016/j.compstruct.2017.03.077.
[32] Dayo AQ, Zegaoui A, Nizamani AA, Kiran S, Wang J, Derradji M, et al. The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Mater Chem Phys 2018;217:270–7. doi:10.1016/j.matchemphys.2018.06.040.
[33] Kabir MM, Wang H, Lau KT, Cardona F. Applied Surface Science Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 2013;276:13–23. doi:10.1016/j.apsusc.2013.02.086.
[34] Dai D, Fan M, Collins P. Fabrication of nanocelluloses from hemp fibers and their application for the reinforcement of hemp fibers. Ind Crop Prod 2013;44:192–9. doi:10.1016/j.indcrop.2012.11.010.
[35] Efendy MGA, Pickering KL. Composites : Part A Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Compos Part A 2014;67:259–67. doi:10.1016/j.compositesa.2014.08.023.
[36] Haghighatnia T, Abbasian A, Morshedian J. Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Ind Crops Prod 2017;108:853–63. doi:10.1016/j.indcrop.2017.07.020.
Published
2021/08/17
Section
Original Scientific Paper