NANOCELLULOSE CONTAINING HIGH CONSISTENCY FURNISHES; SMALL SCALE TESTING

  • Katarina Dimić Aalto University, Helsinki
  • Thaddeus Maloney
  • Jouni Paltakari
  • Yogesh Sanavane Yogesh Sanavane
Keywords: NFC, MFC, Rheologyology, Nanocellulose,

Abstract


Nanotechnology allows development of new enabling technologies with broad commercial potential. Cellulose has also the potential to be the source for renewable materials, which can be made multifunctional and self-assembling  at the same time displace many non-renewable materials including metal and ceramics. The potential application area includes high quality paper products, paper coatings, high-performance and sustainable composites.Research has focused on small scale testing odnanocellulosesuspensions and matrix of furnish materials in order to study new composite materials. Basic rheological and dewatering properties of nanocellulose based high consistency furnishes were evaluated. Two different grades of nanocellulose, microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) with different swelling properties were used. Both types of nanocellulose have a common challenge, namely strong interactions between the particles resulting in aggregation of individual particles. These inter-particle interactions together with the physical entanglements cause high viscosities of nanocellulose suspensions and furnishes, which together with high water bonding property affects processability


References

Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., & Doublier, J. -. (2012). Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. effect of calcium ions. Carbohydrate Polymers, 87(2), 1045-1057.

Ahola, S., Myllytie, P., Österberg, M., Teerinen, T., & Laine, J. (2008). Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources, 3(4), 1315-1328.

Ayol, A., Dentel, S. K., & Filibeli, A. (2010). Rheological characterization of sludges during belt filtration dewatering using an immobilization cell. Journal of Environmental Engineering, 136(9), 992-999.

Barnes, H., & Carnali, J. (1990). The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. Journal of Rheology, 34, 841.

Bledzki, A., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221-274.

De Morais Teixeira, E., Corrêa, A. C., Manzoli, A., de Lima Leite, F., de Oliveira, C. R., & Mattoso, L. H. C. (2010). Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17(3), 595-606.

Dimić-Mišić, K., & Paltakari, J. (2012). Fibrillar material as a cobinder in coating colors formulations. Journal of Applied Engineering Science(Istraživanja i projektovanja za privredu), 10(4), 209-220

Henriksson, M., Henriksson, G., Berglund, L., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434-3441.

Heymann, L., Peukert, S., & Aksel, N. (2002). Investigation of the solid-liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. Journal of Rheology, 46(1), 93-112.

Horvath, A. E., & Lindström, T. (2007). The influence of colloidal interactions on fiber network strength. Journal of Colloid and Interface Science, 309(2), 511-517.

Hubbe, M. A., & Heitmann, J. A. (2007). Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioResources, 2(3), 500-533.

Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: A review. BioResources, 3(3), 929-980.

Hubbe, M. A., & Panczyk, M. (2007). Dewatering of refined, bleached hardwood kraftpulp by gravity, vacuum, and centrifugation with applied pressure part 2. effects of wet-end additives. [Desaguamento de polpa kraft branqueada de fibra curta refinada: Por gravidade, vácuo e centrifugação com aplicação de pressão Parte 2. Efeitos dos aditivos da parte úmida] O Papel (Brazil), 68(10), 88-100.

Iakovlev, M., Hiltunen, E., & van Heiningen, A. (2010). Paper technical potential of spruce SO2-ethanol-water (SEW) pulp compared to kraft pulp. Nordic Pulp and Paper Research Journal, 25(4)

Iotti, M., Gregersen, Ø W., Moe, S., & Lenes, M. (2011). Rheological studies of microfibrillar cellulose water dispersions. Journal of Polymers and the Environment, 19(1), 137-145.

Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71-85.

K.Dimic-Misic, A.Puisto, M.Alava, J. Paltakari, T. Maloney. (2013). The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishesCellulose1-12 (2012)

K.Dimic-Misic, A.Puisto, P.Gane, K.Nieminen ,M.Alava, J. Paltakari, T. Maloney. (2013). The role of MFC/NFC swelling in the rheological behaviour and dewatering of high consistency furnishes.

Kang, T., & Paulapuro, H. (2006). Effect of external fibrillation on the retention of filler.Kami Pa Gikyoshi/Japan Tappi Journal, 60(8), 88-92.

Karppinen, A., Vesterinen, A. H., Saarinen, T., Pietikäinen, P., & Seppälä, J. (2011). Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose, 18, 1381-1390.

Lasseuguette, E., Roux, D., & Nishiyama, Y. (2008). Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose, 15(3), 425-433.

Lindstrom, T. (1985). CELLULOSE SUSPENSIONS AND POLYELECTROLYTES - SOME KINETIC ASPECTS. 121-122.

Marrucci, G. (1996). Dynamics of entanglements: A nonlinear model consistent with the cox-merz rule. Journal of Non-Newtonian Fluid Mechanics, 62(2), 279-289.

Mishra, S. P., Thirree, J., Manent, A., Chabot, B., & Daneault, C. (2010). Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: Effect of process variables. BioResources, 6(1), 121-143.

Nakagaito, A. N., Fujimura, A., Sakai, T., Hama, Y., & Yano, H. (2009a). Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology, 69(7), 1293-1297.

Nakagaito, A. N., Fujimura, A., Sakai, T., Hama, Y., & Yano, H. (2009b). Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Composites Science and Technology, 69(7-8), 1293-1297.

Ovarlez, G., Rodts, S., Chateau, X., & Coussot, P. (2009). Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheologica Acta, 48(8), 831-844.

Puisto, A., Illa, X., Mohtaschemi, M., & Alava, M. (2012a). Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles. The European Physical Journal E: Soft Matter and Biological Physics, 35(1), 1-7.

Puisto, A., Illa, X., Mohtaschemi, M., & Alava, M. (2012b). Modeling the rheology of nanocellulose suspensions. Nordic Pulp and Paper Research Journal, 27(2), 277.

Richmond, F. (2012). The coating of nanofibrillated cellulose onto paper using flooded and metered size press methods. 12PaperCon/Papers/12PAP18.Aspx

Richmond, Finley - Co, Abert - Bousfield Douglas. (2012). The coating of nanofibrillated cellulose onto paper using flooded and metered size press methods. 12PaperCon/Papers/12PAP18.Aspx

Saito, T., & Isogai, A. (2005). TEMPO-mediated oxidation of native cellulose. Appita Annual Conference, , 3 337-340.

Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3), 459-494.

Subramanian, R., Hiltunen, E., & Gane, P. A. C. (2011). Potential use of micro-and nanofibrillated cellulose composites exemplified by paper. Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology, 121.

Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1984). Microfibrillated Cellulose—A new composition of commercial significance. Atlanta, Ga., USA. 115-124.

Xiong, X., Guo, S., Xu, Z., Sheng, P., & Tong, P. (2009). Development of an atomic-force-microscope-based hanging-fiber rheometer for interfacial microrheology. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(6)

Yılmaz, O., Cheaburu, C. N., Gülümser, G., & Vasile, C. (2011). Rheological behaviour of acrylate/montmorillonite nanocomposite latexes and their application in leather finishing as binders. Progress in Organic Coatings, 70(1), 52-58.

Published
2013/09/12
Section
Original Scientific Paper