STATISTICAL METHOD FOR A HYDRAULIC CONDUCTIVITY ESTIMATE USING EMPIRICAL FORMULAS

  • Renáta Dulovičová Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84104 Bratislava, Slovakia
  • Janka Ovcharovichova Civil Engineering Technology, HACC College, 1500 North Third Street, PA 17102 PA, USA
  • Yvetta Velísková Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84104 Bratislava, Slovakia
Keywords: empirical formulas, sand sediments; saturated hydraulic conductivity Ksat

Abstract


Sediment’s hydraulic conductivity is one of the key inputs for estimating solute and water movement in a vadose zone. Laboratory and field measurements are time consuming and subject to substantial inaccuracies. Thus numerous empirical formulas have been adopted to predict hydraulic conductivity from measurable soil properties such as grain size distribution, soil temperature or bulk density. The objective of this study was twofold: (1) assess the hydraulic conductivities calculated from empirical formulas and (2) develop a simple method to estimate hydraulic conductivities for clayey sand sediments. Using sediment samples extracted from irrigation canals in Zitny Ostrov, Southern Slovakia, we evaluated fourteen empirical formulas. Three sets of parameters were assessed using common statistical methods. The sets included computed hydraulic conductivities, logarithmically transformed hydraulic conductivities, and measured values of hydraulic conductivities. Field measurements and laboratory investigations of hydraulic conductivities were performed to supplement our empirical calculations. The three sets of parameters were compared and formed the foundation for developing an original regression equation: Ksat me = 0.019 (LTKsat)2 + 0.183 (LTKsat) + 4.863– an equation that captures the variables with reasonable agreement. The logarithmically transformed and measured values correlated, yielding R2 = 0.945. Thus, the measured values validated our regression equation.

References

Dulovičová, R, Velísková, Y. (2005). The saturated hydraulic conductivity of silts in the main canals of the Žitný Ostrov canal network (in Slovak). Acta Hydrologica Slovaca, Vol.6, No.2: 274-282. ISSN: 1335-6291

Habtamu, F.,M., Tamene, M., and B. Geremew Sinshaw, B.G. (2019). Evaluating Saturated Hydraulic Conductivity under Different Land Use types, Gumara Watershed, Tana Sub-basin. Journal of Academia and Industrial Research (JAIR),Vol. 7, Issue 9: 124, ISSN: 2278-5213

Duong, T.,T, Minh, D.,D, and Yasuhara, K. (2019). Assessing the Effects of Rainfall Intensity and Hydraulic Conductivity on Riverbank Stability. MDPI Water Journal 201911(4), 741, https://doi.org/10.3390/w 11040741

Wang, Y., Jin, M., Deng, Z. (2018). Alternative Model for Predicting Soil Hydraulic Conductivity Over the Complete Moisture Range. American Geophysical Union, https://doi.org/10.1029/2018.WR023037

Ren, X.W. and Santamarina, J.C. (2018). The hydraulic conductivity of sediments: A pore size perspective. Technical note, Engineering Geology, Vol. 233: 48 – 54, https://doi.org/10.1016/j.enggeo.2017.11.022

Hwang, H.T., Jeen, S.W., Suleiman, A.A. and Lee, K.K. (2017). Comparison of Saturated Hydraulic Conductivity Estimated by Three Different Methods. Water - Open Access Journal, MDPI, 9, 942: 1 – 15, https://www.mdpi.com/2073-4441/9/12/942

Ghanbarian, B., Taslimitehrani, V. and Pachepsky, A. (2017). Accuracy of sample dimension-dependent pedotransfer functions in estimation of soil saturated hydraulic conductivity. Catena, Vol. 149, Part 1: 374-380, https://doi.org/10.1016/j.catena.2016.10.015

Gadi, V. K., Tang, Y.R., Das, A., Monga, Ch., Garg, A. Berretta, Ch. and Sahoo L. (2017). Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. Catena, Vol. 155: 20 – 29, https://doi.org/10.1016/j.catena.2017.02.024

Yusuf, U.S., Slim, M.D. and Uchechukwu, E.A. (2016). Hydraulic Conductivity of Compacted Laterite Treated with Iron Ore Tailings. Advances in Civil Engineering, Vol. 2016, Article ID 4275736, 8 pages, http://doi.org/10.1155/2016/4275736

Hussain F. and Nabi G. (2016). Empirical Formulae Evaluation for Hydraulic Conductivity Determination Based on Grain Size Analysis. Original Research Paper. Pyrex Journal of Research in Environmental Studies, Vol 3 (3): 026-032, http://www.pyrexjournals.org/pjres

Dulovičová, R, Velísková, Y, Schűgerl, R. (2016). Hydraulic conductivity of silts in Chotárny channel at Žitný ostrov (in Slovak). Acta Hydrologica Slovaca, Vol.17, No.2: 149-156. ISSN 1335-6291

Špaček, J. (1987). Assesment of hydraulic conductivity from total granularity curves(in Czech). Meliorace, No. 23: 1-13.

Jánošik, J., Jarabicová, M., Pásztorová, M. and Vitková, J. (2009). Utilization of granularity analyses by assessment of saturated hydraulic conductivity. In: Conference on water management of young engineers 2009, Bratislava, Slovakia.

Kosorin, K. (1975). The field measurements of bottom permeability and lateral additions of discharge at Rye Island channels - SVI and SVII. In: Institute of Hydraulics and Hydrology, Slovak Academy of Sciences. Partial task No.II-7-3/6-2.

Dulovičová, R, Velísková, Y. (2010 a).Aggradation of Irrigation Canal Network in Žitný Ostrov, Southern Slovakia. ASCE Journal of Irrigation and Drainage Engineering, Vol.136, No.6: 421-428. https://doi.org/10.1061/(ASCE)1943-4774.0000190

Dulovičová, R, Velísková, Y. (2010b).Aggradation changes at Žitný Ostrov canals (in Slovak). Acta Hydrologica Slovaca, Vol.11, No.2: 219-226. ISSN: 1335-6291

Hogg, R.V., McKean, J. and Craig, A.T. (2014). Introduction to mathematical statistics. Pearson Education Limited, Seventh Edition, London, U.K.

Published
2022/04/07
Section
Original Scientific Paper