THE RESEARCH OF REINFORCED CEMENT LINER FOR RECONSTRUCTION OF WATER SUPPLY AND SEWER PIPES
Abstract
The research is focused on the investigation of the features of mortar liner reinforced with composite mesh, which may be one of the possible options in case of one possible method of trenchless reconstruction of water and sewer pipes. The research had two goals: to study the strength under static loading of a mortar liner reinforced with a composite mesh frame and to define the maximum depth of underground location of a coating element, which is of significant importance if a host pipe cannot bear external loads any longer. Within the research, two specimens of coating with the length of 1000 mm and diameter of 800 mm were tested. The compression results showed that for both specimens the loss of bearing capacity occurred to the fluidity of composite reinforcement under the load of approximately 30 kN. After the strength test, a calculation was made to evaluate the maximum depth of liner location in case if a host pipe fully exhaustits bearing capacity. The results of the calculation showed that the maximum height of the soil layer above the crown of a pipe is 2.8 to 3.2 m depending on the type and features of the soil.
References
Zhou, X.; van Gelder, P.H.A.J.M.; Liang, Y.; Zhang, H. (2020). An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure. Reliability Engineering & System Safety, 204, 107185, DOI: 10.1016/j.ress.2020.107185
Orlov, V.A. (2019). Ensuring physical integrity and energy saving in water transport pipeline systems after their reconstruction. Water and Ecology, Vol.24, no.4, 37-46, DOI:10.23968/2305-3488.2019.24.4.37-46
Orlov, V.; Zotkin, S. (2018). Trenchless technology application of protective coatings that provide energy savings associated with transport of water via pipelines. Advances in Intelligent Systems and Computing, vol. 692, 689-699, DOI:10.1007/978-3-319-70987-1_73
Zhu, H.; Wang, T.; Wang, Y.; Li, V. C. (2021). Trenchless rehabilitation for concrete pipelines of water infrastructure: A review from the structural perspective. Cement and Concrete Composites, vol. 123, 104193, DOI: 10.1016/j.cemconcomp.2021.104193
Mohammadi, M. M.; Najafi, M.; Kaushal, V.; Serajiantehrani, R.; Salehabadi, N.; Ashoori, T. (2014). Sewer pipes condition prediction models: a state-of-the-art review. Infrastructure, vol. 4, 64, DOI: 10.3390/infrastructures4040064
Orlov, V.; Andrianov, A. (2014). The selection of priority pipe sections for sewer network renovation”, Applied Mechanics and Materials, vols. 580-583, 2398-2402, DOI:10.4028/www.scientific.net/AMM.580-583.2398
Zhao, Y.; Ma, B.; Ariaratnam, S.T.; Zeng, C.; Yan, X.; Wang, F.; Wang, T.; Zhu, Z.; He, C.; Shi. G.; Mi, R. (2021). Structural performance of damaged rigid pipe rehabilitated by centrifugal spray on mortar liner. Tunnelling and Underground Space Technology, vol.116, 104117, DOI: 10.1016/j.tust.2021.104117
Azoor, R.; Shannon, B.; Fu, G.; Deo, R.; Kodikara, J. (2021). Performance of field-aged polymeric spray lining for water pipe rehabilitation. Tunnelling and Underground Space Technology, vol.116, 104116. DOI: 10.1016/j.tust.2021.104116
Das, S.; Bayat, A.; Gay, L.; Salimi, M.; Matthews, J. (2016). A comprehensive review on the challenges of cured-in-place pipe (CIPP) installations. Journal Of Water Supply: Research And Technology-Aqua, vol. 65, 583–596, DOI: 10.2166/aqua.2016.119
Rahmaninezhad, S. M.; Han, J.; Al-Naddaf, M.; Jawad, S.; Parsons, R. L.; Liu, H. (2020). Field evaluation of performance of corroded corrugated steel pipe before and after sliplining rehabilitation. Tunnelling and Underground Space Technology, vol.102, 103442, 2020 DOI: 10.1016/j.tust.2020.103442
Wróbel, G.; Szymiczek, M.; Wierzbicki, Ł. (2004). Swagelining as a method of pipelines rehabilitation. Journal of Materials Processing Technology, vols. 157–158, 637-642, DOI: 10.1016/j.jmatprotec.2004.07.150
Aşchileana, I.; Badea. G.; Giurca, I.; Naghiu, G.S.; Iloaie, F.G. (2017). Choosing the Optimal Technology to Rehabilitate the Pipes in Water Distribution Systems Using the AHP Method. Energy Procedia, vol.112, 19-26, DOI: 10.1016/j.egypro.2017.03.1109
Lu, H.; Wu, X.; Ni, H.; Azimi, M.; Yan, X.; Niu, Y. (2020). Stress analysis of urban gas pipeline repaired by inserted hose lining method. Composites Part B: Engineering, vol. 183, 107657, DOI: 10.1016/j.compositesb.2019.107657
Scholten, L.; Scheidegger, A.; Reichert, P.; Mauer, M.; Lienert, J. (2014). Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis. Water Resources, vol. 49, 124-143, DOI: 10.1016/j.watres.2013.11.017
Marlow, D.; Gould, S.; Lane, B. (2015). An expert system for assessing the technical and economic risk of pipe rehabilitation options. Expert Systems with Applications, vol. 42, 8658-8668, DOI: 10.1016/j.eswa.2015.07.020
Valix, M.; Zamri, D.; Mineyama, H.; Cheung, W. H.; Shi, J.; Bustamante, H. (2012). Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. Chinese Journal of Chemical Engineering, vol. 20, 433-438, DOI:10.1016/S1004-9541(11)60150-X
Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Resources, vol. 134, 341-352, DOI: 10.1016/j.watres.2018.01.043
Roychand, R.; Li, J.; De Silva, S.; Saberian, M.; Law. D.; Pramanik, B.K. (2021). Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergs. Resources, Conservation, Recycling, vol. 164, 105166, DOI: 10.1016/j.resconrec.2020.105166
Scheperboer, I.C.; Luimes, R.A.; Suiker, A.S.J.; Bosco, E.; Clemens, F.H.L.R. (2021). Experimental-numerical study on the structural failure of concrete sewer pipes. Tunnelling and Underground Space Technology, vol.116, 104075, DOI: 10.1016/j.tust.2021.104075
Mostafazadeh, M.; Abolmaali A. (2016). Shear behavior of synthetic fiber reinforced concrete. Advances in Civil Engineering Materials, vol, 5, no.1, 371-386, 2016 DOI: 10.1520/ACEM20160005
Standard of Russian Federation “GOST 6482-2011. Reinforced concrete non-pressure pipes. Specifications”. Available online: https://docs.cntd.ru/document/1200093396 (access date: 14/11/2021)
BSI BS EN 1916-2002 Concrete pipes and fittings, unreinforced, steel fibre and reinforced
De la Fuente, A.; Escariz, R. C.; D.de Figueiredo, A.; Molins, C.; Aguado, A. (2012). A new design method for steel fibre reinforced concrete pipes. Construction And Building Materials, vol. 30, 547-555, DOI: 10.1016/j.conbuildmat.2011.12.015
Park, Y.; Abolmaali, A.; Mohammadagha, M.; Lee, S. (2015). Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers. Construction And Building Materials, vol. 77, 218-226, DOI: 10.1016/j.conbuildmat.2014.12.061
Wong, L.S.; Nehdi, M.L. (2018). Critical Analysis of International Precast Concrete Pipe Standards. Infrastructures, vol.3, 18, DOI: 10.3390/infrastructures3030018
Standard of Russian Federation “GOST R 54475-2011 Plastics structured-wall pipes and their fittings for sewerage systems outside the buildings. Specifications”https://docs.cntd.ru/document/1200087662 (access date: 14/11/2021)
ISO 7685:1998. Plastics piping systems - Glass-reinforced thermosetting plastics (GRP) pipes - Determination of initial specific ring stiffness. Available online: https://docs.cntd.ru/document/1200102954 (access date: 14/11/2021)
Construction code of Russian Federation “SP 35.13330.2011. Bridges and culverts”. Available online: https://docs.cntd.ru/document/1200084849 (access date: 14/11/2021)
Construction code of Russian Federation “SP 22.13330.2016. Soil bases of buildings and structures”. Available online: https://docs.cntd.ru/document/456054206 (access date: 14/11/2021)
Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated”, Meteorologische Zeitschrift, vol. 15, 259-263, DOI:10.1127/0941-2948/2006/0130.
Roghanian, N.; Banthia, N. (2019). Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and wastewater pipes. Cement and Concrete Composites, vol. 100, 99-107, DOI:10.1016/j.cemconcomp.2019.03.026
Kuliczkowska, E.; Kuliczkowski, A.; Tchórzewska-Cieślak, B. (2020). The structural integrity of water pipelines by considering the different loads. Engineering Failure Analysis, vol. 118, 104932, DOI: 10.1016/j.engfailanal.2020.104932
Younis, A.-A.; Ramadan, A. S.; Wong, L. S.; Nehdi, M.L. (2020). New rational test for reinforced-concrete pipe eliminating subjective crack-width criteria. Structures, vol. 28, 2507-2522, DOI: 10.1016/j.istruc.2020.10.076
Zhang, X.; Fang, H.; Hu, Q.; Ma, B.; Hu, S.; Du, M.; Du, X.; Yang, K.; Li, B.; Shi, M. (2020). Mechanical performance of corroded reinforced concrete pipelines rehabilitated with sprayed-on cementitious liners subjected to combined loads. Tunnelling and Underground Space Technology, vol.103, 104266, DOI: 10.1016/j.tust.2021.104266
Yang, K.; Fang, H.; Bu, J.; Zhang, X.; Li, B.; Du, X.; Zhang, Z. (2021). Full-scale experimental investigation of the mechanical characteristics of corroded buried concrete pipes after cured-in-place-pipe rehabilitation. Tunnelling and Underground Space Technology, vol. 117, 104153, DOI: 10.1016/j.tust.2021.104153