RENEWAL OF BUSES AND REGISTRATION OF NEW BUSES IN THE SLOVAK REPUBLIC AND THE CZECH REPUBLIC

  • Jozef Gnap University of Žilina, Faculty of Operation and Economics of Transport and Communications, Department of Road and Urban Transport Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • Marek Dočkalik University of Žilina, Faculty of Operation and Economics of Transport and Communications, Department of Road and Urban Transport Univerzitná 8215/1, 010 26 Žilina, Slovakia
Keywords: environment, buses, EU directive, standards

Abstract


The use of alternative fuels and the use of vehicles meeting the strictest emission standards can contribute to improving the impact of road transport on the environment. Therefore, it is also very important to restore buses, which can affect the environment in cities to a certain extent. Achieving an increase in the number and share of ecological buses is possible through several tools. The contribution is focused on the analysis of the EU directive on the support of ecological and energy-saving road transport vehicles and the study of the number and share of ecological buses in European countries, and the data for the Slovak Republic and the Czech Republic, which can also be compared for the same period, are processed in more detail. Due to the growth rate of the number of ecological buses during the period under review, it can be seen that in the Slovak Republic it is definitely necessary to increase the number and the proportion of buses that have a more favourable impact on the environment and are considered ecological.

References

Chang, Ch., Liao, Y., Chang, Y. (2019). Life cycle assessment of alternative energy types e including hydrogen e for public city buses in Taiwan. International Journal of Hydrogen Energy, vol. 44, 18472-18482, DOI: 10.1016/j.ijhydene.2019.05.073

Correa, G., Munoz, P.M., Rodriguez, C.R.  (2019). A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy, vol. 187, 115906, DOI: 10.1016/j.energy.2019.115906

Todoruț, A., Cordoș, N., Iclodean, C. (2020). Replacing Diesel Buses with Electric Buses for Sustainable Public Transportation and Reduction of CO2 Emissions. Polish Journal of Environmental Studies, vol. 29, no. 5, DOI: 10.15244/pjoes/112899

Pelletier, S., Jabali, O., Mendoza, J. E., Laporte, G. (2019). The electric bus fleet transition problem. Transportation Research Part C: Emerging Technologies, vol. 109, 174-193, DOI: 10.1016/j.trc.2019.10.012

Fabianova, J., Janekova, J. (2021). Assessment of investment in electric buses: A case study of a public transport company. Open Engineering, vol. 11, no. 1, 907-914, DOI: 10.1515/eng-2021-0089

Borghetti, F., Longo, M., Mazzoncini, R., Panarese, A., Somaschini, C. (2022). Transformation of an existing urban bus line: Milan Full Electric project. Transportation Research Procedia, vol. 60, 84-91, DOI: https://doi.org/10.1016/j.trpro.2021.12.012

Jakub, S., Adrian, L., Mieczysław, B., Ewelina, B., Katarzyna, Z. (2022). Life cycle assessment study on the public transport bus fleet electrification in the context of sustainable urban development strategy. Science of The Total Environment, vol. 824, 153872, DOI: 10.1016/j.scitotenv.2022.153872.

Konečný, V., Gnap, J., Settey, T., Petro, F., Skrúcaný, T., Figlus T. (2020). Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe. Energies, vol. 13, no. 15, 3869, DOI: 10:3390/en/13153869

Bermond, V., Caliman, R. R., Rosa, R. D. A., Pereira, E. P., Carvalhaes, B. B. (2019). A method to assess the eco-efficiency of a public bus transportation service. International Journal of Sustainable Transportation, vol. 13, no. 8, 567-581, DOI: 10.1080/15568318.2018.1490467

Esmael, F. A., Falah, Z. A., Mahmoudi, J. (2021). Modelling and analysis of an urban road traffic noise pollution: Case study of an interrupted flow traffic noise at a signalized intersection. Journal of Applied Engineering Science, vol. 19, no. 4, 1150-1162, DOI: 10.5937/jaes0-29921

Perumal, S. S., Lusby, R. M., Larsen, J. (2021). Electric bus planning & scheduling: A review of related problems and methodologies. European Journal of Operational Research, DOI: 10.1016/j.ejor.2021.10.058

Poliak, M., Beňuš, J., Nica, E. (2021). Analysis and research plan of commercial truck drivers’ potentially dangerous driving behaviors caused by the changes of Regulation (EC) No. 561/2006. Transportation Research Procedia, vol. 55, 79-86, DOI: 10.1016/j.trpro.2021.07.172

Csiszár, C., Csonka, B., Földes, D., Wirth, E., Lovas, T. (2019). Urban public charging station locating method for electric vehicles based on land use approach. J. Transp. Geogr. 2019, vol. 74, 173–180, DOI: 10.1016/j.jtrangeo.2018.11.016

Ivkovic, I., Kaplanovic, S., Sekulic, D. (2019). Analysis of External Costs of CO2 Emissions For CNG Buses i n Intercity Bus Service. TRANSPORT, vol. 34, no. 5, 529-538, DOI: 10.3846/transport.2019.11473

Rajaeifar, M.A., Tabatabaei, M., Aghbashlo, M., Nizami, A., Heidrich, O. (2019). Emissions from urban bus fleets running on biodiesel blends under realworld operating conditions: Implications for designing future case studies. Renewable and Sustainable Energy Reviews, vol. 111, 276-292, DOI: 10.1016/j.rser.2019.05.004

Šarkan, B., Loman, M., Synák, F., Richtář, M., Gidlewski, M. (2022). Influence of Engine Electronic Management Fault Simulation on Vehicle Operation. Sensors, vol. 22, no. 5, 2054, DOI: 10.3390/s22052054

Hensher, D. A. (2021). The case for negotiated contracts under the transition to a green bus fleet. Transportation Research Part A: Policy and Practice, vol. 154, 255-269, DOI: 10.1016/j.tra.2021.10.006

Saz-Salazar, S., Feo-Valero, M., Vazquez-Paja, B. (2020). Valuing public acceptance of alternative-fuel buses using a Latent Class Tobit model: A case study in Valencia. Journal of Cleaner Production, vol. 261, 121199, DOI: 10.1016/j.jclepro.2020.121199

Poliak, M., Poliaková, A., Mrníková, M., Šimurková, P., Jaskiewicz, M., Rafał, J. (2017). The Competitiveness of Public Transport. J. Compet, vol. 9, 81, DOI: 10.744/joc.2017.03.06.

Kalašová, A., Hájnik, A., Kubaľák, S., Beňuš, J., Harantová, V. (2022). The impact of actuated control on the environment and the traffic flow. Journal of Applied Engineering Science, vol. 20, no. 2, 305-314, DOI: 10.5937/jaes0-33043 

Alomari, A., Al-Omari, A., Aljizawi, W. (2022). Evaluation of travel time reliability in urban areas using mobile navigation applications in Jordan. Journal of Applied Engineering Science, vol. 20, no. 3, 644-656, DOI: 10.5937/jaes0-35118

Kushchenko, L. (2022). The analyzing of personal and public transport traffic flows on Belgorod agglomeration. Journal of Applied Engineering Science, vol. 20, no. 3, 700-706, DOI: 10.5937/jaes0-35593

Marra, A. D., Sun, L., Corman, F. (2022). The impact of COVID-19 pandemic on public transport usage and route choice: Evidences from a long-term tracking study in urban area. Transport Policy, vol. 116, 258-268, DOI: 10.1016/j.tranpol.2021.12.009

Rothengatter, W., Zhang, J., Hayashi, Y., Nosach, A., Wang, K., Oum, T. H. (2021). Pandemic waves and the time after Covid-19–Consequences for the transport sector. Transport Policy, vol. 110, 225-237, DOI: 10.1016/j.tranpol.2021.06.003

Zhou, H., Wang, Y., Huscroft, J. R., Bai, K. (2021). Impacts of COVID-19 and anti-pandemic policies on urban transport—an empirical study in China. Transport policy, vol. 110, 135-149, DOI: 10.1016/j.tranpol.2021.05.030

Harantová, V., Hájnik, A., Kalašová, A., Figlus, T. (2022). The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia. Energies, vol. 15, no. 6, 2020, DOI: 10.3390/en15062020

Querol, X., Alastuey, A., Moreno, N., Minguillón, M. C., Moreno, T., Karanasiou, A., Felisi, J. M. (2022). How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental research, vol. 205, 112451, DOI: 10.1016/j.envres.2021.112451

EU Directive 2019/1161 on the promotion of ecological and energy-efficient road transport vehicles.

Regulation of the European Parliament and the Council (EC) no. 1370/2007 on services in the public interest in rail and road passenger transport.

Act 214/2021 Coll. on the support of ecological road transport vehicles and on the amendment of some laws.

EUR-Lex. from https://eur-lex.europa.eu/advanced-search-form.html?action=update&qid=1634651486378, accessed on 2022-06-07.

EUR-Lex. from: https://eur-lex.europa.eu/search.html?SUBDOM_INIT=MNE&DTS_SUBDOM=MNE&DB_CELEX_OTHER=32019L1161*&DTS_DOM=NATIONAL_LAW&lang=sk&type=advanced&qid=1634646517813&page=1, accessed on 2022-06-03.

ACEA. Vehicles in use Europe 2022, from https://www.acea.auto/files/ACEA-report-vehicles-in-use-europe-2022.pdf, accessed on 2022-06-09.

Regulation (EU) 2018/858 of the European Parliament and of the Council on the approval and market surveillance of motor vehicles and their trailers, as well as systems, components and separate technical units intended for such vehicles.

Act no. 106/2018 Coll. on the operation of vehicles in road traffic and on the amendment of some laws.

Košice self-governing region. Quality standards IDS East, from https://www.uvo.gov.sk/vyhladavanie-zakaziek/detail/dokumenty/435404, accessed on 2022-06-15.

Banská Bystrica self-governing region, Technical and operational standards, from https://josephine.proebiz.com/sk/tender/13457/summary, accessed on 2022-06-16.

Banská Bystrica, from https://imhd.sk/bb/doc/sk/19753/Mesto-Bansk%C3%A1-Bystrica-vyhl%C3%A1silo-verejn%C3%BA-s%C3%BA%C5%A5a%C5%BE-na-trolejbusov%C3%A9ho-a-autobusov%C3%A9ho-dopravcu, accessed on 2022-06-16.

Region Vysočina, Technical and operational standards, from https://ezak.kr-vysocina.cz/contract_display_8893.html, accessed on 2022-06-17.

Region Středočeský, from https://www.dnoviny.cz/verejna-doprava/stredocesky-kraj-pripravuje-tendry-na-dopravu-za-desitky-miliard-korun, accessed on 2022-06-17.

Prostějov, Technical and operational standards IDSOK, from https://tenderarena.cz/dodavatel/seznam-profilu-zadavatelu/detail/Z0004148/zakazka/520789, accessed on 2022-06-18.

Zdopravy. from https://zdopravy.cz/obri-zakazka-na-elektrobusy-pariz-objednala-u-peti-vyrobcu-autobusy-za-825-milionu-eur-2-91655/, accessed on 2022-06-20.

Rechargenews. from https://www.rechargenews.com/energy-transition/french-city-drops-order-for-51-hydrogen-buses-after-realising-electric-ones-six-times-cheaper-to-run/2-1-1143717, accessed on 2022-06-22.

Published
2022/11/20
Section
Original Scientific Paper