ANALYTICAL METHOD FOR ELASTIC RECOVERY PREDICTION OF AIR BENDING SHEET

Keywords: springback, analytical model, plastic deformation, elastic recovery, potential hardening

Abstract


The estimation of the elastic recovery is of great importance during the planning of plastic deformation processes, because this estimation could reduce the number of required steps to reach the target geometry. The sheet bending process is one of the most widely used industrial processes, and that is why this paper seeks to provide an analytical model based on an elastic behavior with potential hardening of the material that could be combined with the geometric information of the process to estimate the degree of recovery of the components. The potential hardening model was selected due to its simplicity and good fit with the experimental data observed in steel sheets in this application. The effectiveness of the model was compared with the results obtained by several authors. The effectiveness of the model is significantly influenced by the parameters of the bending process and the method used to estimate the radius of curvature.

References

Meyers M. A., Chawla K. K. (2007). Mechanical Behavior of Materials. Cambridge press, Cambridge

Wagoner R. H., Lim H., Lee M.G.(2013). Advanced Issues in springback, Int. J. Plast., vol. 45, p.GG3–20, Jun.X, DOI: 10.1016/j.ijplas.2012.08.006.

Marciniak Z., Duncan J.L., Hu S.J. (2002). Mechanics of Sheet Metal Forming. Elsevier, Oxford.

Gardiner F.J. (1957).The Springback of Metals. Trans. ASME, vol 79, no 1, p.1-9

Hou Y., Min J., Lin J., Liu Z, Carsley J.E, Stoughton T.B. (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, p.173–178. DOI: 10.1016/j.proeng.2017.10.757.

Li K.P., Carden W.P., Wagoner R.H. Simulation of springback. (2002). Int. J. Mech. Sci., vol. 44, no. 1, p.103–122, DOI: 10.1016/S0020-7403(01)00083-2.

Yilamu K., Hino R., Hamasaki H., Yoshida F. (2010). Air bending and springback of stainless steel clad aluminum sheet. J. Mater. Process. Technol., vol. 210, no. 2, p. 272–278, DOI: 10.1016/j. jmatprotec. .2009.09.010.

Sitar M., Kosel F., Brojan M. (2015). Numerical and experimental analysis of elastic–plastic pure bending and springback of beams of asymmetric cross-sections. Int. J. Mech. Sci., vol. 90, p. 77–88, DOI: 10.1016/j.ijmecsci.2014.11.006.

Lepadatu D., Hambli R., Kobi A., Barreau A. (2005). Optimization of springback in bending processes using FEM simulation and response surface method. Int. J. Adv. Manuf. Technol., vol. 27, no. 1–2, p. 40–47, DOI: 10.1007/s00170-004-2146-z.

Sumikawa S., Ishiwatari A., Hiramoto J., (2017). Improvement of springback prediction accuracy by considering nonlinear elastoplastic behavior after stress reversal. J. Mater. Process. Technol., vol. 241, p. 46–53, DOI: 10.1016/j.jmatprotec.2016.11.005.

Chan W. M., Chew H. I., Lee H. P., Cheok B.T. (2004). Finite element analysis of spring-back of V-bending sheet metal forming processes. J. Mater. Process. Technol., vol. 148, no. 1, p. 15–24, DOI: 10.1016/j.jmatprotec.2003.11.038.

Burchitz I.A., Meinders T. (2008). Adaptive through-thickness integration for accurate springback prediction. Int. J. Numer. Methods Eng., vol. 75, no. 5, pp. 533–554, DOI: 10.1002/nme.2260.

Gisario A., Mehrpouya M., Venettacci S., Barletta M. (2017). Laser-assisted bending of Titanium Grade-2 sheets: Experimental analysis and numerical simulation. Opt. Lasers Eng., vol. 92, p. 110–119, DOI: 10.1016/j.optlaseng.2016.09.004.

Wang J., Verma S., Alexander R., Gau J.T. (2008). Springback control of sheet metal air bending process. J. Manuf. Process., vol. 10, no. 1, p. 21–27, DOI: 10.1016/j.manpro.2007.09.001.

Wagoner R.H., Wang J.F., Li M. (2006). Springback. Metalworking: Sheet Forming, ASM International, p. 733–755. DOI: 10.31399/asm.hb.v14b.a0005131.

Garcia-Romeu M.L. (2005). Contribución al estudio del proceso de doblado al aire de chapas: modelo de predicción del ángulo de recuperación y del radio de doblado final. Universidad de Girona, Girona.

Xiao H., Bruhns O.T., Meyers A. (2006). Elastoplasticity beyond small deformations. Acta Mech., vol. 182, no. 1–2, p. 31–111, DOI: 10.1007/s00707-005-0282-7.

Carden W., Geng L., Matlock D., Wagoner R.H. (2002). Measurement of springback. Int. J. Mech. Sci., vol. 44, no. 1, p.79–101, DOI: 10.1016/S0020-7403(01)00082-0.

Huang C., Xiang Z.Q., Mao Y.S., Zhang S.X. (2017). An improved study on Gardiner’s work based on elastoplastic analysis considering deformation history. Int. J. Mech. Sci., vol. 130, pp. 111–118, DOI: 10.1016/j.ijmecsci.2017.05.053.

Hosford W.F., Caddell R.M. (2007). Metal forming: Mechanics and metallurgy. Cambridge University press, Cambridge.

Askeland D., Puhlé P. (2013). The Science and Engineering of Materials. Springer, New York.

Al E.A., Mranal J. (2004). A new constitutive model for prediction of springback sheet metal forming. Material processing and desing: modeling, simulation and applications, AIP, p.1651–1657. DOI:https://doi.org/10.1063/1.1766766.

Yi H.K., Kim,D.W. Van Tyne C.J., Moon Y.H. (2008). Analytical prediction of springback based on residual differential strain during sheet metal bending. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 222, no. 2, p. 117–129, DOI: 10.1243/09544062JMES682.

Beer F., Johnston R., DeWolf J., Mazurek D. (2014). Mechanics of Materials. McGraw-Hill Education, New York.

Garcia-Romeu M.L, Ciurana J., Ferrer I. (2007). Springback determination of sheet metals in an air bendingprocess based on an experimental work. J. Mater. Process. Technol., vol. 191, no. 1–3, p.174–177, DOI: 10.1016/j.jmatprotec.2007.03.019.

Vorkov V., Aerens R., Vandepitte D., Duflou J.R. (2017). Springback Prediction of High-strength Steels in Large Radius Air Bending Using Finite Element Modeling Approach. Procedia Eng., vol. 81, p.1005–1010, DOI: 10.1016/j.proeng.2014.10.132.

Published
2023/12/01
Section
Original Scientific Paper