ROBUSTNESS OF PRESTRESSED REINFORCED CONCRETE STRUCTURES UNDER SPECIAL IMPACTS

  • Natalia Fedorova National Research Moscow State University of Civil Engineering, Mytishchi Branch of National Research Moscow State University of Civil Engineering, Department of Civil Engineering, Mytishchi, Russia
  • Tatiana Iliushchenko Kursk State University, Department of Civil Engineering, Kursk, Russia; National Research Moscow State University of Civil Engineering, Department of Technical Standardization in the field of construction, Moscow, Russia
Keywords: reinforced concrete structure, prestressing, robustness, special impact

Abstract


The purpose of the study was to develop the principles of the theory of robustness of reinforced concrete structural systems of buildings and structures with prestressed elements and methods of protecting them from progressive collapse under special impacts. To achieve this, the article presents the results of studies of monolithic reinforced concrete frames of multi-storey buildings and reinforced concrete frames, with prestressed elements in transcendent states caused by special effects, are given in the article. The current state of the problem of robustness of building frames under special impacts is considered. A method for calculating the reinforced concrete frame of a multi-storey building with prestressed elements has been developed and its static-dynamic deformation has been studied to determine the robustness parameter. The parameters of deformation and destruction of prestressed reinforced concrete multi-story frame frames of buildings under design and beyond design impacts are experimentally determined. The results of the experimental study of frame structures are compared with the results of studies of similar structures without prestressing. The obtained results of the study can be used in the development of methods for protecting the frames of multi-storey buildings from progressive collapse.

References

Trekin N. N, Kodysh, E. N., Kelasiev, N. G., Shmakov, S. D., Chaganov, A. B., Terehov, I. A. (2019) The improvement of protection methods from the progressive collapse of one-storey industrial buildings. J Phys Conf Ser., vol. 1425, no. 1, 012050. DOI:10.1088/1742-6596/1425/1/012050

Hammad K., Lofty I., Naiem M. (2021) Enhancing Progressive Collapse Resistance in Existing Buildings. Design and Construction of Smart Cities, p. 39-46. DOI:10.1007/978-3-030-64217-4_5

Azim I., Yang J., Bhatta S., Wang F., Liu Q. F. (2020) Factors influencing the progressive collapse resistance of RC frame structures. Journal of Building Engineering. vol. 27, 100986. DOI:10.1016/j.jobe.2019.100986

Forquin P., Chen W. (2017) An experimental investigation of the progressive collapse resistance of beam-column RC sub-assemblages. Construction and Building Materials, vol. 152, 1068-1084. DOI:10.1016/j.conbuildmat.2017.05.179

Alshaikh I. M. H., Bakar B. A., Alwesabi E. A., Akil H. M. (2020) Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, vol. 25, 881-900.

Savin S, Kolchunov V., Fedorova N., Tuyen Vu N. (2023) Experimental and numerical investigations of RC frame stability failure under a corner column removal scenario, Buildings, vol. 13, no. 4, 908. DOI:10.3390/buildings13040908

Travush, V.I., Fedorova, N.V. (2018) Survivability of structural systems of buildings with special effects. Magazine of Civil Engineering, vol. 81, no. 5, 73–80. Doi: 10.18720/MCE.81.8.

Sadek F., Bao Y., Main J. A., Lew H. S. (2020) Evaluation and enhancement of robustness for reinforced concrete buildings.Journal of Structural Engineering, vol. 148, no.1, 04021248. DOI:10.1061/(ASCE)ST.1943-541X.0003226

Praxedes C., Yuan X. X. (2022) Robustness-oriented optimal design for reinforced concrete frames considering the large uncertainty of progressive collapse threats. Structural Safety, vol. 94, 102139. DOI: 10.1016/j.strusafe.2021.102139

Lobanov S.L., Blednov D.A., Sorokin V.E. (2014) On the technology of automated assessment of the robustness and safety of Navy ships. Software products and systems, vol. 2, 131-135

Fedorova N.V., Savin S.Yu. (2021) Progressive collapse resistance of facilities experienced to localized structural damage - an analytical review. Building and Reconstruction, vol. 3, 76-108. DOI: 10.33979/2073-7416-2021-95-3-76-108

Kiakojouri F., Sheidaii M. R., De Biagi V., Chiaia B. (2021) Progressive collapse of structures: A discussion on annotated nomenclature. Structures, vol. 29, 1417-1423. DOI:10.1016/j.istruc.2020.12.006

Kiakojouri F., Zeinali E., Adam J. M., De Biagi, V. (2023) Experimental studies on the progressive collapse of building structures: A review and discussion on dynamic column removal techniques. Structures, vol. 57, 105059. DOI:10.1016/j.istruc.2023.105059

Travush V.I. Shapiro G.I. Kolchunov V.I. Leontyev E.V. Fedorova N.V. (2019) Design of protection of large-panel buildings from progressive collapse. Housing Construction, vol.3, 40-46. DOI: 10.31659/0044-4472-2019-3-40-46

Mohamed O., Al Khattab R., Mishra A., Isam F. (2019) Recommendations for reducing progressive collapse potential in flat slab structural systems. IOP Conference Series: Materials Science and Engineering, vol. 471, no. 5, 052069. DOI:10.1088/1757-899X/471/5/052069

Abdelwahed B. (2019) A review on building progressive collapse, survey and discussion. Case Studies in Construction Materials, vol. 11, e00264. DOI:10.1016/j.cscm.2019.e00264

Fedorova N. V., Iliushchenko T. A. (2019) Influence of pre-stressing over parameters of diagram of static-dynamic deformation of RC elements. IOP conference series: materials science and engineering, vol. 687, no. 3, 033033. DOI:10.1088/1757-899X/687/3/033033

Feng D. C., Shi H. R., Parisi F., Brunesi E., Wang C. L. (2021) Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures. Engineering Failure Analysis, vol. 129, 105683. DOI:10.1016/j.engfailanal.2021.105683

Yang T., Chen W., Han Z. (2020) Experimental Investigation of Progressive Collapse of Prestressed Concrete Frames after the Loss of Middle Column. Advances in Civil Engineering, vol. 5, 1-12. DOI:10.1155/2020/8219712

Kolchunov V., Iliushchenko T., Savin S. (2022) Deformation and failure of prestressed reinforced concrete frames in ultimate states. Vatin, N., Roshchina, S., Serdjuks, D. (eds), Proceedings of MPCPE 2021. Lecture Notes in Civil Engineering, Russia, Latvia, 41-53. DOI:10.1007/978-3-030-85236-8_4

Kolchunov V.I., Fedorova N.V., Savin S.Yu., Kovalev V.V., Iliushchenko T.A. (2019) Failure simulation of a RC multi-storey building frame with prestressed girders. Magazine of Civil Engineering, vol. 8, 155–162. DOI: 10.18720/MCE.92.13.

Fedorova N.V., Khalina T.A. (2017) Study of dynamic additional loads in reinforced concrete structural systems during sudden structural changes. Industrial and civil construction, vol. 5, 32-36.

Huang Y., Tao Y., Yi W., Zhou Y., Deng L. (2021) Numerical investigation on compressive arch action of prestressed concrete beam-column assemblies against progressive collapse. Journal of Building Engineering, vol. 44, 102991. DOI:10.1016/j.jobe.2021.102991

Geniev G.A., Kissyuk V.N., Tyupin G.A. (1974) Theory of plasticity of concrete and reinforced concrete. Stroyizdat, Moscow

Korsun V., Kalmykov Y., Niedoriezov A., Korsun A. (2015) The influence of the initial concrete strength on its deformation under triaxial compression. Procedia engineering, vol. 117, 959-969. DOI:10.1016/j.proeng.2015.08.190

Yu J., Gan Y. P., Liu J. (2021) Numerical study of dynamic responses of reinforced concrete infilled frames subjected to progressive collapse. Advances in Structural Engineering, vol. 24, no. 4, 635-652. DOI:10.1177/1369433220965273

Veryuzhsky Yu.V., Kolchunov Vl. I., Barabash M.S., Genzersky Yu.V. (2006) Computer technologies for the design of reinforced concrete structures. NAU, Kyiv

Mileikovsky I.E., Kolchunov V.I. (1995) An extraordinary mixed method for calculating frame systems with elements of solid and composite sections. Proceedings of universities. Construction, vol. 7–8, 32–37.

Fedorova N. V., Ngoc V. T. (2019) Deformation and failure of monolithic reinforced concrete frames under special actions. J Phys Conf Ser., vol. 1425, no. 1, 012033. DOI: 10.1088/1742-6596/1425/1/012033

Kolcunov V.I., Tuyen V.N., Korenkov P.A. (2020) Deformation and failure of a monolithic reinforced concrete frame under accidental actions. J Conf Ser: Materials Science and Engineering, vol. 753, 032037. DOI: 10.1088/1757-899X/753/3/032037

Bazant Z.P., Kwon Y.W. (1994) Failure of slender and stocky reinforced concrete columns: tests of size effect. Materials and Structures, vol. 27, 79-90

Published
2024/09/12
Section
Original Scientific Paper