DESIGN AND DEVELOPMENT OF HYBRID SOLAR E-BIKE FOR SUSTAINABLE GREEN TRANSPORTATION

  • Asrori Asrori Department of Mechanical Engineering, State Polytechnic of Malang, Indonesia http://orcid.org/0000-0002-9414-3015
  • Yuniarto Agus Winoko Department of Mechanical Engineering, State Polytechnic of Malang, Indonesia https://orcid.org/0009-0006-7999-327X
  • Subagiyo Subagiyo Department of Mechanical Engineering, State Polytechnic of Malang, Indonesia
  • Irwan Heryanto Eryk Department of Electrical Engineering, State Polytechnic of Malang, Indonesia
  • Pondi Udianto Department of Mechanical Engineering, State Polytechnic of Malang, Indonesia
Keywords: PV-module, e-bike, solar energy, hybrid, charging efficiency

Abstract


Solar energy has great potential for utilization as an unlimited and alternative renewable energy source that can be stored in batteries and used to drive the BLDC motor on electric bicycles. The purpose of this study was to determine the charging efficiency of a 100 Wp solar panel mounted on an electric bicycle. A solar power meter was used to measure the solar radiation absorbed by the photovoltaic (PV) module, while sensors were used to measure the current and voltage (DC) output from the solar panels. The sensor signals were then processed by a microcontroller and displayed on an LCD screen, as well as recorded by an SD card data logger. The characteristics of the charging voltage were compared with and without the PV module. The results showed that at a solar radiation of 1008 W/m², the maximum voltage and current achieved were 17.49 V and 3.37 A, respectively. Under these conditions, the battery charging efficiency of a 100 Wp solar panel was 58.94%. A one-hour test with an average solar radiation of 976.3 W/m² showed that integrating a 100 Wp PV module increased the energy stored in the e-bike battery by 33.33%. Therefore, the hybrid solar e-bike concept has the potential to improve the performance of electric vehicles in the future.

References

Susilo, S. H., Asrori A., Gumono G. (2022). Analysis of the efficiency of using the polycrystalline and amorphous PV module in the territory of Indonesia. Journal of Applied Engineering Science, vol. 20, no. 1, 239-245, DOI:10.5937/ jaes0-31607

Asrori, A., Susilo, S. H. (2022). The development of Fresnel lens concentrators for solar water heaters: a case study in tropical climates. Eureka: Physics and Engineering, no. 3, pp. 3-10. DOI:10.21303/2461-4262.2022.002441

Asrori, A., Sulistyono, S., Susilo, S.H., Yudiyanto, E. (2023). Design and simulation of performance fresnel solar cooker by single axis solar tracker. AIP Conference Proceedings, vol. 2531, 080008 (2023). DOI: 10.1063/5.0125941

Alktranee, M., Bencs, P. (2021). Applications of nanotechnology with hybrid photovoltaic/thermal systems: a review. Journal of Applied Engineering Science, vol. 19, no. 2, 292-306, DOI: 10.5937/jaes0-28760

Ziar, H., Manganiello, P., Isabella, O., Zeman, M. (2021). Photovoltatronics: intelligent PV-based devices for energy and information applications. Energy Environ. Sci, vol. 14, 106-12. DOI: 10.1039/D0EE02491K

Aghaei, M. R., Ebadi, H., de Oliveira, A. K. V., Vaezi, S., Eskandari, A., Castañón, J. M. (2020). New concepts and applications of solar PV systems. In Photovoltaic Solar Energy Conversion Technologies: Applications and Environmental Impacts. Kaliamoorthi, P.K., United Kingdom: Brian Romer, 349-390. DOI: 10.1016/B978-0-12-819610-6.00011-9

Alanazi, F. (2023). Electric vehicles: benefits, challenges, and potential solutions for wide spread adaptation. Appl. Sci., vol. 13, 6016. DOI: 10.3390/app13106016

Sudjoko, C., Sasongko, N. A., Utami, I., Maghfuri, A. (2021). Utilization of electric vehicles as an energy alternative to reduce carbon emissions. IOP Conf. Series: Earth and Environmental Science 926 (2021) 012094, IOP Publishing, DOI:10.1088/1755-1315/926/1/012094

Mishra, S., Dwivedi, G., Upadhyay, S., Chauhan, A. (2022). Modelling of standalone solar photovoltaic based electric bike charging. Materials Today: Proceedings, vol. 49, no. 2, 473-480. DOI: 10.1016/j.matpr.2021.02.738

Ajiatmo, D., Robandi I.(2016). Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle. Engineering International Conference (EIC), AIP Conf. Proc, 1818. DOI: 10.1063/1.497994

Adhisuwignjo, S., Siradjuddin, I., Rifa’i, M., Putri, R. I. (2017). Development of a solar-powered electric bicycle in bike sharing transportation system. IOP Conference Series: Earth and Environmental Science, vol. 70, 1-10. DOI: 10.1088/1755-1315/70/1/012025

Abadi, I., Imron, C., Bachrowi, M. M., Fitriyanah, D. N. (2020). Design and implementation of battery charging system on solar tracker based stand alone PV using fuzzy modified particle swarm optimization. AIMS Energy, vol. 8, no. 1, 142-155. DOI: 10.3934/energy.2020.1.142

Asrori, A., Rohman, F., Faizal, E., Karis, M. (2020). The design and performance investigation of solar e-bike using flexible solar panel by different battery charging controller. International Journal of Mechanical and Production Engineering Research and Development, vol. 10, no. 3, 14431–14442. DOI: 10.24247/ijmperdjun20201374

Sumbodo W., Wahyudi, Setiadi R., Kriswanto, Budiman Arif F. (2021). Design and fabrication of electric bike with sliding frame. Journal of Applied Engineering Science, vol. 19, no.4, 948 - 953. DOI: 10.5937/ jaes0-28957

Gurung, A., Qiao, Q. (2018). Solar charging batteries: advances, challenges, and opportunities. Joule, vol. 2, no. 7, 1217-1230. DOI: 10.1016/j.joule.2018.04.006

Fishman, E., Cherry, C. (2016). E-bikes in the mainstream: reviewing a decade of research. Transport Reviews, vol. 36, no. 1, 72-91. DOI: 10.1080/01441647.2015.1069907

Apostolou, G., Reinders, A., Geurs, K. (2018). An overview of existing experiences with solar-powered e-bikes. Energies, vol. 11, 1-19. DOI: 10.3390/en11082129

Shashank, R., Akshay, V., Ramesh, S., Nithin, B. G., Ravi, K. S., Krishna, S. A. M. (2021). Design and fabrication of solar powered bicycle. Journal of Physics: Conference Series, IOP Publishing, 2070. DOI: 10.1088/1742-6596/2070/1/012208

Bai, L., Sze, N.N., Liu, P., Haggart , A.G. (2020). Effect of environmental awareness on electric bicycle users’ mode choices. Transportation Research Part D: Transport and Environment, vol. 82, 102320. DOI: 10.1016/j.trd.2020.102320

Ling, Z., Cherry, C. R., MacArthur, J. H., Weiner, J. X. (2017). Differences of Cycling experiences and perceptions between e-bike and bicycle users in the United States. Sustainability, vol. 9, no.9, 1662,1-18. DOI: 10.3390/su9091662

SP100-18M. PV module specifications, from https://bumienergisurya.com/panel-surya-st-sp100-18m/ accessed on 2023-09-07.

Akila, A., Akila, E., Akila, S., Anu, K., Elzalet, J. (2019). Charging Station for E-Vehicle using Solar with IOT. 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 785-791. DOI: 10.1109/ICACCS.2019.8728391.

Krivík, P. (2018). Methods of SoC determination of lead acid battery. Journal of Energy Storage, vol. 15, 191–195. DOI: 10.1016/j.est.2017.11.013

Czerwiński, A., Wróbel, J., Lach, J., Wróbel, K., Podsadni, P. (2018). The charging-discharging behavior of the lead-acid cell with electrodes based on carbon matrix. Journal of Solid State Electrochemistry, vol. 22, 2703–2714. DOI: 10.1007/s10008-018-3981-4

Kuznetsov, P.N., Abd Ali, L.M., Kuvshinov, V.V., Issa, H.A., Mohammed, H.J., Al-bairmani, A.G. (2020). Investigation of the losses of photovoltaic solar systems during operation under partial shading. Journal of Applied Engineering Science, vol. 18, no. 3, 313-320. DOI:10.5937/jaes18-24460

Published
2023/11/25
Section
Original Scientific Paper