ANALYZING THE EFFECTS OF MANUFACTURING PARAMETERS MODIFICATION ON FINAL SURFACE ROUGHNESS IN SELECTIVE LASER MELTING PARTS
Abstract
Selective Laser Melting (SLM) is an additive manufacturing technique widely used today for producing metal components. This method enables the fabrication of geometrically complex parts while reducing costs and production time compared to traditional manufacturing techniques. However, a notable drawback of SLM is its tendency to produce high surface roughness and superficial defects such as balling, porosity, debris, and waviness. This study evaluates the effects of modifying two manufacturing parameters—scanning speed and laser power—on the final surface roughness. To achieve this, cylindrical specimens were fabricated using various combinations of these parameters, and the resulting surface roughness metrics (Sa, Sq, Ssk, Sku, Sdr, among others) were measured using an optical 3D surface roughness measurement instrument. A Taguchi L8 design was applied to analyse the influence of the manufacturing parameters on the measured roughness characteristics. This study investigates the influence of laser power and scanning speed on surfaces manufactured through Selective Laser Melting (SLM) and their effects on the previously described roughness parameters. The authors observed that the manufacturing parameters have varying impacts on the final surface roughness of components produced via SLM. Due to the inherent characteristics of the process, a specific combination of parameters that reduces roughness within a specimen's layer may increase roughness at the layer boundaries. These findings underscore the complex relationship between manufacturing parameters and surface roughness in SLM-produced parts, emphasizing the need for strategies, such as surface finishing post-treatments, to achieve the desired surface quality.
References
M. G. & R. B. Stéphane Gorsse, Christopher Hutchinson, “Additive manufacturing of metals_ a brief review of the characteristic microstructures and properties,” Sci Technol Adv Mater, vol. 18, no. 1, p. 29, 2017, doi: 10.1080/14686996.2017.1361305.
J. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties,” Apr. 16, 2016, Case Western Reserve University, Cleveland. doi: 10.1146/annurev-matsci-070115-032024.
D. Gu, Laser additive manufacturing of high-performance materials. 2015. doi: 10.1007/978-3-662-46089-4.
“Selective Laser Melting,” 2020. doi: 10.3390/books978-3-03928-579-2.
C. Y. Yap et al., “Review of selective laser melting: Materials and applications,” Appl Phys Rev, vol. 2, no. 4, 2015, doi: 10.1063/1.4935926.
Y. Lu et al., “CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties and microstructural analysis,” 2017, doi: 10.1016/j.powtec.2017.11.018.
Y. S. Song Bo, Shifeng Wen, Chunze Yan, Qingsong Wei, Selective Laser Melting for Metal and Metal Matrix Composites -. Elsevier, 2020. Accessed: May 31, 2021. [Online]. Available: https://books.google.com.co/books?id=rOneDwAAQBAJ&printsec=frontcover&dq=selective+laser+melting&hl=es&sa=X&redir_esc=y#v=onepage&q=selective laser melting&f=false
F. E. Wiria, S. L. Sing, and W. Y. Yeong, Selective laser melting of novel titanium-tantalum alloy as orthopedic biomaterial. 2020.
I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, “Hierarchical design principles of selective laser melting for high quality metallic objects,” Addit Manuf, vol. 7, no. 1, pp. 45–56, Dec. 2015, doi: 10.1016/j.addma.2014.12.007.
Y. Wei et al., “Micro selective laser melting of SS316L: Single Tracks, Defects, microstructures and Thermal/Mechanical properties,” Opt Laser Technol, vol. 145, no. 1, pp. 107469–107481, Aug. 2022, doi: 10.1016/j.optlastec.2021.107469.
B. Zhang, Y. Li, and Q. Bai, “Defect Formation Mechanisms in Selective Laser Melting: A Review,” Chinese Journal of Mechanical Engineering (English Edition), vol. 30, no. 3, pp. 515–527, Apr. 2017, doi: 10.1007/s10033-017-0121-5.
S. Afkhami, M. Dabiri, S. H. Alavi, T. Björk, and A. Salminen, “Fatigue characteristics of steels manufactured by selective laser melting,” Int J Fatigue, vol. 122, no. November 2018, pp. 72–83, 2019, doi: 10.1016/j.ijfatigue.2018.12.029.
J. J. Babu, M. Mehrpouya, T. C. Pijper, G. Willemsen, and T. Vaneker, “An Experimental Study of Downfacing Surfaces in Selective Laser Melting,” Adv Eng Mater, vol. 24, no. 8, pp. 1–11, 2022, doi: 10.1002/adem.202101562.
S. Leuders et al., “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int J Fatigue, vol. 48, pp. 300–307, 2013, doi: 10.1016/j.ijfatigue.2012.11.011.
E. Ossola, A. A. Shapiro, A. Pate, S. Firdosy, E. Brusa, and R. Sesana, “Fabrication defects and limitations of AlSi10Mg lattice structures manufactured by selective laser melting,” https://doi-org.ezproxy.unal.edu.co/10.1177/14644207211012726, vol. 235, no. 9, pp. 2071–2082, Apr. 2021, doi: 10.1177/14644207211012726.
A. K. Singla et al., “Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments,” J Manuf Process, vol. 64, no. 1, pp. 161–187, Jan. 2021, doi: 10.1016/j.jmapro.2021.01.009.
Z.-C. Fang, Z.-L. Wu, C.-G. Huang, and C.-W. Wu, “Review on residual stress in selective laser melting additive manufacturing of alloy parts,” Opt Laser Technol, vol. 129, no. 1, pp. 106283–106298, Dec. 2020, doi: 10.1016/j.optlastec.2020.106283.
F. Simoni, A. Huxol, and F. J. Villmer, “Improving surface quality in selective laser melting based tool making,” 2021. doi: 10.1007/s10845-021-01744-9.
R. K. Enneti, R. Morgan, and S. V Atre, “Effect of process parameters on the Selective Laser Melting (SLM) of tungsten,” International journal of refractory metals y hard materials, vol. 71, no. 1, pp. 315–319, Dec. 2017, doi: 10.1016/j.ijrmhm.2017.11.035.
H. S. Park, D. S. Nguyen, T. Le-Hong, and X. Van Tran, “Machine learning-based optimization of process parameters in selective laser melting for biomedical applications,” J Intell Manuf, vol. 33, no. 6, pp. 1843–1858, 2022, doi: 10.1007/s10845-021-01773-4.
J. Li, J. Hu, Y. Zhu, X. Yu, M. Yu, and H. Yang, “Surface roughness control of root analogue dental implants fabricated using selective laser melting,” Addit Manuf, vol. 34, no. 34, p. 101283, 2020, doi: 10.1016/j.addma.2020.101283.
I. N. Bobrovskij, “How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Feb. 2018. doi: 10.1088/1757-899X/302/1/012066.
B. Azarhoushang and A. Daneshi, “Workpiece surface roughness,” Tribology and Fundamentals of Abrasive Machining Processes: Third Edition, vol. 1, pp. 575–590, Jan. 2022, doi: 10.1016/B978-0-12-823777-9.00015-X.
P. Champigneux, C. Renault-Sentenac, D. Bourrier, C. Rossi, M.-L. Delia, and A. Bergel, “Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes,” 2019, doi: 10.1016/j.bioelechem.2019.03.002.
K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?,” Biotechnol J, vol. 6, no. 9, pp. 1103–1114, 2011, doi: 10.1002/biot.201100027.
Sculpteo, “3D printing: understanding the layer thickness,” Sculpteo. Accessed: Nov. 15, 2022. [Online]. Available: https://www.sculpteo.com/blog/2015/07/29/make-beautiful-3d-prints-understanding-the-layer-thickness/
K. Ökten and A. Biyikoğlu, “Development of thermal model for the determination of SLM process parameters,” Opt Laser Technol, vol. 137, no. October 2020, 2021, doi: 10.1016/j.optlastec.2020.106825.
M. Boutaous, X. Liu, D. A. Siginer, and S. Xin, “Balling phenomenon in metallic laser based 3D printing process,” International Journal of Thermal Sciences, vol. 167, no. 1, pp. 107011–1070211, Sep. 2021, doi: 10.1016/j.ijthermalsci.2021.107011.
R. Tadmor, “Marangoni flow revisited,” J Colloid Interface Sci, vol. 332, no. 1, pp. 451–454, Dec. 2009, doi: 10.1016/j.jcis.2008.12.047.
G. Strano, L. Hao, R. M. Everson, and K. E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting,” J Mater Process Technol, vol. 213, no. 4, pp. 589–597, 2013, doi: 10.1016/j.jmatprotec.2012.11.011.
B. Fotovvati and K. Chou, “Build surface study of single-layer raster scanning in selective laser melting: Surface roughness prediction using deep learning,” Manuf Lett, vol. 33, pp. 701–711, Sep. 2022, doi: 10.1016/j.mfglet.2022.07.088.
E. Maleki, S. Bagherifard, M. Bandini, and M. Guagliano, “Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities,” Addit Manuf, vol. 37, no. 1, pp. 101619–101631, May 2021, doi: 10.1016/j.addma.2020.101619.
M. A. Baciu, E. R. Baciu, C. Bejinariu, S. L. Toma, A. Danila, and C. Baciu, “Influence of Selective Laser Melting Processing Parameters of Co-Cr-W Powders on the Roughness of Exterior Surfaces,” IOP Conf Ser Mater Sci Eng, vol. 374, no. 1, pp. 12010–12016, 2018, doi: 10.1088/1757-899X/374/1/012010.
S. Milton, A. Morandeau, F. Chalon, and R. Leroy, “Influence of Finish Machining on the Surface Integrity of Ti6Al4V Produced by Selective Laser Melting,” Procedia CIRP, vol. 45, pp. 127–130, 2016, doi: 10.1016/j.procir.2016.02.340.
M. Elsayed, M. Ghazy, Y. Youssef, and K. Essa, “Optimization of SLM Process Parameters for Ti6Al4V Medical Implants,” Birmingham, 2018. doi: 10.1108/RPJ-05-2018-0112.
Sisma/mysint100, “MYSINT100, Laser Metal Fusion metal 3D printing technology,” www.sisma.com/en/products/mysint100. Accessed: Feb. 01, 2023. [Online]. Available: https://www.sisma.com/en/products/mysint100/
Scheftner.dental, “Starbond Easy Powder 30 - Scheftner Dental Alloys,” Sheftmer.dental/starbond. Accessed: Mar. 07, 2023. [Online]. Available: https://scheftner.dental/starbond-easy-powder-30-en.html
Universidad Nacional de Colombia - Sede Bogotá, “Laboratorio de Metrología Dimensional de Precisión - Universidad Nacional de Colombia.” Accessed: Jun. 08, 2023. [Online]. Available: https://ingenieria.unal.edu.co/metrodim/
Alicona, “Alicona ꞌ s Optical Roughness Measurement,” Pocket Poster, pp. 1–12, 2015, [Online]. Available: https://www.alicona.com/publications/publication/bruker-aliconas-optical-roughness-measurement/
Minitab, “Diseños ortogonales de Taguchi fraccionados,” support minitab. [Online]. Available: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/supporting-topics/taguchi-designs/dummy-treatments-for-taguchi-designs/
C. J. Cortés-Rodríguez, F. C. Herreño Cuestas, and I. Z. Areque-Salazar, Medición de Rugosidad Superficial 3D, 1st ed., vol. 1. Kassel: Kassel University press, 2019.
J. J. Lifton and T. Liu, “Evaluation of the standard measurement uncertainty due to the ISO50 surface determination method for dimensional computed tomography,” Precis Eng, vol. 61, pp. 82–92, 2020, doi: 10.1016/j.precisioneng.2019.10.004.
W. Grzesik, “Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art,” J Mater Eng Perform, vol. 25, no. 10, pp. 4460–4468, 2016, doi: 10.1007/s11665-016-2293-z.
International Standard, “ISO 25178-606.,” Switzerland, Jun. 2015.
A. Rezaei et al., “Microstructural and mechanical anisotropy of selective laser melted IN718 superalloy at room and high temperatures using small punch test,” Mater Charact, vol. 162, no. 1, pp. 110200–110213, Feb. 2020, doi: 10.1016/j.matchar.2020.110200.
X. Yan et al., “Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625,” Journal of materials processing tech., vol. 288, no. 1, pp. 116878–116889, Aug. 2020, doi: 10.1016/j.jmatprotec.2020.116878.
T. Özel, A. Altay, B. Kaftanoglu, R. Leach, N. Senin, and A. Donmez, “Focus variation measurement and prediction of surface texture parameters using machine learning in laser powder bed fusion,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 142, no. 1, Jan. 2020, doi: 10.1115/1.4045415.
Y. Du, T. Mukherjee, and T. DebRoy, “Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects,” Appl Mater Today, vol. 24, no. 1, pp. 101123–101135, Sep. 2021, doi: 10.1016/j.apmt.2021.101123.
Marcello Lappa, “Numerical Techniques and Insights into Physics,” in Fluids, Materials and Microgravity, First., vol. 1, Elsevier Science 2004, 2004, ch. 3, pp. 1–538.
I. Yadroitsev and I. Smurov, “Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape,” in Physics Procedia, Elsevier B.V., 2010, pp. 551–560. doi: 10.1016/j.phpro.2010.08.083.
X. Zhou et al., “Textures formed in a CoCrMo alloy by selective laser melting,” J Alloys Compd, vol. 631, no. 1, pp. 153–164, Jan. 2015, doi: 10.1016/j.jallcom.2015.01.096.
Y. Kaynak, O. Kitay, and E. Tascioglu, “Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing,” Addit Manuf, vol. 26, no. September 2018, pp. 221–234, 2019, doi: 10.1007/s40964-019-00099-1.
Y. Kaynak and O. Kitay, “The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting,” Addit Manuf, vol. 26, no. September 2018, pp. 84–93, 2019, doi: 10.1016/j.addma.2018.12.021.