ENHANCING THE PERFORMANCE OF SAVONIUS ROTOR USING TIERED-HEIGHT ZIGZAG PATTERNS IN CONCAVE SURFACE

  • Ruzita Sumiati Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Padang, Indonesia; Mechanical Engineering Department, Faculty of Engineering, Politeknik Negeri Padang, Padang, Indonesia
  • Uyung Gatot S. Dinata Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Padang, Indonesia
  • Dendi Adi Saputra Mechanical Engineering Department, Faculty of Engineering, Universitas Andalas, Padang, Indonesia
Keywords: wind energy, savonius rotor, tiered-height zigzag, coefficient of power, concave surface

Abstract


A technique to reduce CO2 emissions from the use of fossil fuels is to use clean energy. One of them is wind energy, which is generated by a wind turbine. Savonius, a type of vertical axis wind turbine, is a small-scale energy conversion device suitable for low wind speeds, such as those characteristic of Indonesian wind speed. The objective of the current study was to analyze the impact of implementing a tiered-height zigzag pattern on the concave surface of the Savonius blade. The zigzag angle operates to direct the wind toward the reverse blade, consequently augmenting the pressure on the reverse blade. In addition, the tiered-height zigzag pattern in the concave surface increases the area of the turbine that is in contact with the wind, which in turn generates more energy. This study used an open-type wind tunnel to conduct experiments as the primary technique of investigation. Its performance was assessed in terms of power and torque coefficients. Additionally, experiments were conducted with other standard semi-circular blades to get a direct comparison. According to the findings of the experiments, incorporating a tiered-height zigzag pattern into a concave surface may produce a power coefficient (Cp) that is 16 % higher than that of a semi-circular. The highest Cp was 0.286 at a TSR of 0.55 and U = 6 m/s. In this case, the Savonius wind turbine's ability may be elevated by including a tiered-height zigzag pattern in the Savonius concave surface.

References

Olabi, A. G., and Abdelkareem, M. A. (2022). Renewable energy and climate change.Renew. Sustain. Energy Rev., vol. 158, Apr. 2022, Doi: 10.1016/j.rser.2022.112111.

Curtin, J., McInerney, B. Ó Gallachóir, C. Hickey, P. Deane, and Deeney, P. (2019). Quantifying Stranding Risk For Fossil Fuel Assets And Implications For Renewable Energy Investment: A Review Of The Literature. Renewable and Sustainable Energy Reviews, vol. 116. Doi: 10.1016/j.rser.2019.109402.

Yang, X., Pang, J., Teng, V., Gong, R., and Springer, C. (2019). The Environmental Co-Benefit And Economic Impact Of China 'S Low-Carbon Pathways: Evidence From Linking Bottom-Up And Top-Down Models. Renewable and Sustainable Energy Reviews. vol. 136, p. 110438, Doi: 10.1016/j.rser.2020.110438.

Martin O. L. Hansen, (2008). Aerodynamics of Wind Turbines. Second Edition. Earthscan London

Chang, Y., and Han Phoumin (2021). Harnessing Wind Energy Potential in Asean: Modelling and Policy Implications. Sustainability. vol 13, p. 4279, Doi: 10.3390/su13084279

Burton, N. T., Jenkins, D., and Sharpe, E. B. (2011). Wind Energy Handbook Wind Energy Handbook, Second Edition. 2011. [Online]. Available: www.wiley.com.

Dewan, A. Gautam, A., and Goyal, R. (2021). Savonius Wind Turbines: A Review Of Recent Advances In Design And Performance Enhancements. Material Today Procceding., Volume 47, Part 11, Pages 2976-2983, Doi: 10.1016/j.matpr.2021.05.205.

Wijanarko, T., et. al. (2022). Assessing the Wind Energy Potential in Provinces of West Java, Papua, and East Borneo in Indonesia. Journal Of Applied Engineering Science vol. 20, no. 4, pp. 1053–1062, Doi: 10.5937/jaes0-35192.

Wijayanto, D. S., Soenarto, Triyono, M. B., and Ibadi, H., (2022). Double-Stage Savonius and Darrieus Wind Turbines for Urban Areas Using Fiberglass Materials, Journal Of Applied Engineering Science, vol. 20, no. 2, pp. 386–394, Doi: 10.5937/jaes0-33297.

Hariyanto, R., Soeparman, S., Widhiyanuriyawan, D., and Sasongko, M. N. (2018). Cfd Study On The Ability Of A Ventilated Blade In Improving The Savonius Rotor Performance, Journal Of Applied Engineering Science, vol. 16, no. 3, pp. 383–390, Doi: 10.5937/jaes16-17189.

Sánchez, A. R., Del Rio, J. A. S., Quintana, E. C., and Sanín-Villa, D. (2023). Numerical Comparison of Savonius Turbine As a Rotor for Gravitational Vortex Turbine With Standard Rotor. Journal Of Applied Engineering Science, vol. 21, no. 1, pp. 204–211, Doi: 10.5937/jaes0-39847.

Tasneem, Z. et al., (2020). An Analytical Review On The Evaluation Of Wind Resource And Wind Turbine For Urban Application: Prospect and Challenges. Developments in the Built Environment, vol. 4. Elsevier Ltd, Doi: 10.1016/j.dibe.2020.100033.

Kurniawan, Y. et al. 2020. Experimental Study of Savonius Wind Turbine Performance with Blade Layer Addition. J. Adv. Res. Fluid Mech. Therm. Sci., vol. 69, no. 1, pp. 23–33, Doi: 10.37934/ARFMTS.69.1.2333.

Al-Gburi, K. A. H. et al. (2021). A Comparative Study Review: The Performance Of Savonius-Type Rotors. Material Today Procceding. vol. 57, pp. 343–349, Doi: 10.1016/j.matpr.2021.09.226.

Alom, N., and Saha, U. K. (2019). Evolution And Progress In The Development Of Savonius Wind Turbine Rotor Blade Profiles And Shapes. Journal of Solar Energy Engineering. Trans. ASME, vol. 141, no. 3, pp. 1–15, Doi: 10.1115/1.4041848.

Rizk, M., and Nasr, K. (2023). Computational Fluid Dynamics Investigations Over Conventional And Modified Savonius Wind Turbines. Heliyon, vol. 9, no. 6, p. e16876, Doi: 10.1016/j.heliyon.2023.e16876.

Saad, A. S. et. al., (2020). Performance Enhancement Of Twisted-Bladed Savonius Vertical Axis Wind Turbines,” Energy Conversion Management, vol. 209, p. 112673, Doi: 10.1016/j.enconman.2020.112673.

Mojola, O. (1985). On The Aerodynamic Design Of The Savonius Windmill Rotor. Journal of Wind Engineering and Industrial Aerodynamics., vol. 21, pp. 223–231, DOI: 10.1016/j.enconman.2020.112673

Alomar, Z., et. al., (2023). Numerical and Experimental Study on the Effect of Overlap on Savonius Wind Turbine, International Journal of Power and Energy Systems, Vol. 43, No. 10. Doi: 10.2316/J.2023.203-0450.

Fujisawa, N. (1992). On The Torque Mechanism Of Savonius Rotors. Journal of Wind Engineering and Industrial Aerodynamics.volume 40, Issue 3, p. 277-292, Doi: 10.1016/0167-6105(92)90380-S.

Dorel, S. F., et. al., (2021). Review Of Specific Performance Parameters Of Vertical Wind Turbine Rotors Based On The Savonius Type. MDPI AG. Energies, vol. 14, no. 7, doi: 10.3390/en14071962.

Ahmed S. O. M. A. and Saad, S., (2021). Influence of Varying the Stage Aspect Ratio on the Performance of Multi-Stage Savonius Wind Rotors. ASME: Energy Resour. Technol., vol. 144, no. 1, Doi: 10.1115/1.4050876

Talukdar, P. K., et. al., (2018). Parametric Analysis Of Model Savonius Hydrokinetic Turbines Through Experimental And Computational Investigations,” Energy Conversion and Management, vol. 158, pp. 36–49, Doi: 10.1016/j.enconman.2017.12.011.

Saha, P. K., Thotla,S., and Maity, D. (2008). Optimum Design Configuration Of Savonius Rotor Through Wind Tunnel Experiments. Journal of Wind Engineering and Industrial Aerodynamics. vol. 96, no. 8–9, pp. 1359–1375, Doi: 10.1016/j.jweia.2008.03.005.

Hayashi, T., et. al., (2005). Wind Tunnel Tests On A Different Phase Three-Stage Savonius Rotor,” JSME Int. Journal, Ser. B Fluids Therm. Eng., vol. 48, no. 1, pp. 9–16, Doi: 10.1299/jsmeb.48.9.

Jeon, K.S., et. al., (2015). Effects Of End Plates With Various Shapes And Sizes On Helical Savonius Wind Turbines. Renewable. Energy, vol. 79, no. 1, pp. 167–176, Doi: 10.1016/j.renene.2014.11.035.

Sivasegaram, S., (1978). Secondary Parameters Affecting the Performance of Resistance-Type Vertical-Axis Wind Rotors. Sage Publications, Ltd: Wind Engineering. Vol. 2, No. 1, pp. 49-58 online: https://www.jstor.org/stable/43749784

Altan B. D. and Atilgan, M., (2012). An Experimental And Numerical Study On The Improvement Of The Performance Of Savonius Wind Rotor. Energy Conversion and Management, vol. 49, no. 12, pp. 3425–3432, Doi: 10.1016/j.enconman.2008.08.021.

Ogawa, Takenori (1986). The Effects Of A Deflecting Plate And Rotor End Plates,” Bulletin of JSME, vol. 29, p. 2115-2121, Doi: 10.1299/jsme1958.29.2115

Chong, W.T., et. al., (2012). Vertical Axis Wind Turbine With Omni-Directional-Guide-Vane For Urban High-Rise Buildings,” J. Cent. South Univ. Technol. vol. 19, no. 3, pp. 727–732, Doi: 10.1007/s11771-012-1064-8.

Salleh, M. B, Kamaruddin, N. M. and Mohamed-Kassim, Z., (2020). The Effects Of Deflector Longitudinal Position And Height On The Power Performance Of A Conventional Savonius Turbine. Energy Convers. Manag., vol. 226, p. 113584, Doi: 10.1016/j.enconman.2020.113584.

Chen, L., Chen, J., and Zhang, Z., (2018). Review of the Savonius Rotor’s Blade Profile And Its Performance. J. Renew. Sustain. Energy, vol. 10, no. 1, Doi: 10.1063/1.5012024.

Al-Gburi, K. A. H., et al. (2022). Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine. Energies, vol. 15, no. 23, Doi: 10.3390/en15238808.

Salleh, M. B, Kamaruddin, N. M. and Mohamed-Kassim, Z., (2020). The Effects Of Deflector Longitudinal Position And Height On The Power Performance Of A Conventional Savonius Turbine. Energy Convers. Manag, vol. 226, p. 113584, Doi: 10.1016/j.enconman.2020.113584.

Chen, L., Chen, J., and Zhang, Z., (2018). Review of the Savonius Rotor’s Blade Profile And Its Performance. J. Renew. Sustain. Energy, vol. 10, no. 1, Doi: 10.1063/1.5012024.

Al-Gburi, K. A. H., et al. (2022). Experimental And Simulation Investigation Of Performance Of Scaled Model For A Rotor Of A Savonius Wind Turbine. Energies, vol. 15, no. 23, Doi: 10.3390/en15238808.

Meri S. A. et al., (2019). Performance Evaluation of Savonius Wind Turbine Based on a New Design of Blade Shape. International Journal of Mechanical Engineering and Technology, vol. 10, no. 01, pp. 837–846. online: https://iaeme.com/MasterAdmin/Journal_uploads/ijmet/volume_10_issue_1/ijmet_10_01_087.pdf

Meri S.A. and Bin Salleh, H. (2020)., Numerical Investigation of Savonius Rotor Elliptical and the Design Modification on a Blade Shape. Lecture Notes in Mechanical Engineering, pp. 177–185. Doi: 10.1007/978-981-13-8297-0_20.

Al-Gburi, K. A. H., et. al. (2023). Enhancing Savonius Vertical Axis Wind Turbine Performance: A Comprehensive Approach with Numerical Analysis and Experimental Investigations. Energies, vol. 16, no. 10, Doi: 10.3390/en16104204.

Goodhand, M. N., et. al., (2016). The Limitations Of Using ‘Ra’ To Describe Surface Roughness,” J. Turbomach., vol. 138, no. 10, pp. 1–8, Doi: 10.1115/1.4032280.

Al-Kayiem, H. H., Bhayo, B. A. and Assadi, H. 2016. Comparative Critique On The Design Parameters And Their Effect On The Performance Of S-Rotors. Renewable Energy, vol. 99. Elsevier Ltd, pp. 1306–1317, Doi: 10.1016/j.renene.2016.07.015.

Talukdar, P. K. et. al. (2017). Parametric Analysis Of Model Savonius Hydrokinetic Turbines Through Experimental And Computational Investigations. Energy Convers. Management. vol. 158, no. October 2017, pp. 36–49, Doi: 10.1016/j.enconman.2017.12.011.

Akwa, J. V.et al. (2012). A review on the performance of Savonius wind turbines,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3054–3064, Doi: 10.1016/j.rser.2012.02.056.

Diwan, S.S., Ramesh, O.N. (2007). Laminar Separation Bubbles: Dynamics And Control. Sadhana 32, 103–109 https://doi.org/10.1007/s12046-007-0009-7.

Takeyeldein, M. M. et. al. (2019). Wind Turbine Design Using Thin Airfoil SD2030. Evergreen, vol. 6, no. 2, pp. 114–123, Doi: 10.5109/2321003.

Szilvási-Nagy,M., and Mátyási, G. (2003). Analysis of STL Files,” in Mathematical and Computer Modelling, vol. 38, no. 7–9, pp. 945–960. Doi: 10.1016/s0895-7177(03)90079-3.

Kurniawan, Y., Tjahjana, D. D. D. P., and Santoso, B. (2020). Experimental Studies of Performance Savonius Wind Turbine with Variation Layered Multiple Blade. IOP Conference Series: Earth and Environmental Science, vol. 541, no. 1. Doi: 10.1088/1755-1315/541/1/012006.

Anderson, J. D. (2011). Fundamentals of Aerodynamics (6th edition), vol. 1984, no. 3.

Gahraz, S. R. J. at. Al. (2018). Wind tunnel study of the effect zigzag tape on aerodynamics performance of a wind turbine airfoil,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 41, no. 1, pp. 1–9

Tjahjana, D. D. D. P. et al. (2021). Experimental study of the effect of slotted blades on the Savonius wind turbine performance,” Theor. Appl. Mech. Lett., vol. 11, no. 3, p. 100249, Doi: 10.1016/j.taml.2021.100249.

Grönman, A. et. al. (2019). Experimental and analytical analysis of vaned savonius turbine performance under different operating conditions. Applied. Energy, vol. 250, pp. 864–872, Doi: 10.1016/j.apenergy.2019.05.105.

Roy, R. and Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied. Energy, vol. 137, pp. 117–125, Doi: 10.1016/j.apenergy.2014.10.022.

Published
2024/02/22
Section
Original Scientific Paper