NUMERICAL ANALYSIS OF AN AUTOMOTIVE CAGE USED IN THE PERUVIAN MINing SECTOR

  • Junior Víctor Angeles-Rocca University Señor de Sipán, Mechanical Electrical Engineering Department, Chiclayo, Peru https://orcid.org/0000-0002-1555-0510
  • Carlos Alexis Alvarado-Silva Cesar Vallejo University, Mechanical Electrical Engineering Department, Trujillo, Peru https://orcid.org/0000-0002-3588-8869
  • Geraldo César Rosário de Oliveira Paulista State University "Júlio de Mesquita Filho", Mechanical Engineering Department, Sao Paulo, Brazil https://orcid.org/0000-0001-6357-7454
  • André Cristiano De Souza Paulista State University "Júlio de Mesquita Filho", Mechanical Engineering Department, Sao Paulo, Brazil
  • Fernando de Azevedo Silva Paulista State University "Júlio de Mesquita Filho", Mechanical Engineering Department, Sao Paulo, Brazil https://orcid.org/0000-0003-1986-4418
Keywords: finite elements, automotive safety cages, structural deformations, stress analysis

Abstract


A comparative analysis was conducted between the two structural formats employed in crafting internal roll cages in the Peruvian domestic market (Tubular and Laminar). The aim was to discern the protective effectiveness of each design. The examined cage design pertains to the most prevalent light utility vehicle used within the national mining sector. The computational analysis sought to derive Von Mises forces, resultant deformations, safety factors, and displacement along the applied force direction. This simulation was executed through finite element analysis, incorporating regulations sourced from the International Automobile Federation (FIA) and the Federal Motor Vehicle Safety Standards (FMVSS), which were adapted via analysis of Roll Over Protective Structures (ROPS). The results demonstrate a substantial safety factor in the laminar cage and a lesser concentration of Von Mises stresses in the tubular cage. Nonetheless, both structures experience significant deformations when subjected to lateral loads and at their respective joints. As a conclusion, it can be deduced that both structural configurations adopted in the crafting of interior roll cages adhere to specified standards. Notably, the laminar cage presents aesthetic and mechanical advantages. How-ever, the necessity for experimental testing to comprehend the structure's dynamic behaviour is underscored.

References

Organización Mundial de la Salud. Un reporte sobre la salud, from http://www.who.int/es/news-room/fact-sheets/detail/road-traffic-injuries, accessed on 2023-12-13.

Ministerio de Transportes y Comunicaciones. Ley General de Transporte y Tránsito Terrestre - N° 27181, from https://www.gob.pe/institucion/congreso-de-la-republica/normas-legales/9868-27181, accessed on 2012-11-21.

Ministerio de Transportes y Comunicaciones. Reglamento Nacional de Vehículos - Decreto Supremo N 058-2003-MTC, from https://www.gob.pe/institucion/mtc/normas-legales/10013-058-2003-mtc, accessed on 2003-10-07.

Federation Internationale De l’ Automobile. APPENDIX J – ARTICLE 253 “Safety Equipment for Cars of Group”, from https://www.fia.com/sites/default/files/253_2023.pdf, accessed on 2022-12-09.

Federation Internationale De l’ Automobile. 2021 Homologation Regulations for Safety Cages, from https://storage-aso.lequipe.fr/ASO/motorSports_ccr/reglement-d-homologation.pdf, accessed on 2021-06-14.

Lewandowski, J. (2006). Federal Motor Vehicle Safety Standard (FMVSS) 208 – Occupant Crash Protection: Right Front Passenger Test Methodologies. SAE 2006 World Congress & Exhibition, p. 1-10, DOI:10.4271/2006-01-0720.

Tobón, C., Patiño, I., Lemmel, K. (2018). Análisis por elementos finitos del desempeño estructural de jaula de seguridad para vehículo Renault Logan bajo normatividad FIA. Revista CINTEX, vol. 23, no. 2, 35-53, DOI: 10.33131/24222208.312.

Fateh, A., Hejazi, F., Jaafar, M. S., Abd Karim, I. (2016). Numerical and experimental evaluation of a developed nonlinear curved spring element under compression force. Journal of Constructional Steel Research, vol. 117, no. 2, 115-125, DOI: 10.1016/j.jcsr.2015.10.011.

Köhn, A., de Azevedo, F. (2020). A numerical and analytical study of the stress field generated by the contact between a rail and a wheel. SN Applied Sciences, vol. 2, no. 6, 1252, DOI: 10.1007/s42452-020-3044-1.

Alvarado-Silva, C. A., Rosario, G, Gamarra-Rosado, V., de Azevedo, F. (2022). A Polynomial Equation Model for Fatigue Crack Propagation in an Aeronautical Steel Material. Materials Science Forum, vol. 1053, 212–217. DOI: 10.4028/p-7j8ye8.

Putini, E., de Azevedo, F. (2018). Fatigue life estimation in a hydrogenerator rotor with cracks using the finite element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 40, no. 9, 1-15, DOI: 10.1007/s40430-018-1340-0.

Marques, B., Marques, T., de Azevedo, F., Cândido, G., Rezende, M. (2023). Failure criteria assessment of carbon/epoxy laminate under tensile loads using finite element method: Validation with experimental tests and fractographic analysis. Mechanics of Advanced Materials and Structures, vol. 30, no. 6, 1274 – 1283, DOI: 10.1080/15376494.2022.2029984.

Naima, J., Nissrine, M., Mohammed, R., Benaissa, El Fahime. (2023). Numerical investigation of premature fatigue of highspeed train wheels in presence of facets defect with case study. Journal of Applied Engineering Science, vol. 21, no. 4, 1062-1073, DOI: 10.5937/jaes0-43734.

Nicola, L., Cima, M. (2024). Development of a fem procedure for evaluating the pressure profile in the industrial wheel and fatigue strength analyses. Journal of Applied Engineering Science, vol. 22, no. 1, 171-183, DOI: 10.5937/jaes0-48184

Corda, J., Chethan, K., Satish, B., Shetty, S., Shyamasunder, N., Zuber, M. (2023). Damage fatigue life evaluation of different hip implant designs using finite element analysis. Journal of Applied Engineering Science, vol. 21, no. 3,896–907, DOI: 10.5937/jaes0-44094.

Published
2024/08/19
Section
Original Scientific Paper