THE EFFECT OF FUEL PREHEATING ON THE PERFORMANCE OF USED OIL FUEL STOVES

Keywords: used oil stove, fuel preheating, performance

Abstract


This research explores the utilization of used oil as an alternative fuel and investigates the impact of preheating on its performance in combustion chambers. The study employs an experimental approach to vary preheating methods, utilizing two models: a ring placed in the combustion chamber and a ring combined with a spiral between the inner and outer stove walls. A comparative analysis is conducted against conventional stoves. The investigation focuses on efficiency and flame temperature distribution. Results reveal that the stove incorporating the spiral-ring preheating model demonstrates the highest efficiency at 55.52%, marking a 9.76% increase over conventional stoves. Additionally, this model generates the largest average heat area and the highest temperatures, notably reaching 1077°C, with a broader area above 1000°C compared to other models. The preheating process aids in reducing fuel viscosity and enhancing evaporation, facilitating a more homogeneous air-fuel mixture, thereby promoting more complete combustion.

References

White, D. J., Burrowes, G., Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B., & Whittaker, S. (2004). Greenhouse gas sequestration in abandoned oil reservoirs: The International Energy Agency Weyburn pilot project. GSA Today, 14(77), 4–10. https://doi.org/10.1130/1052-5173(2004)014<004 >2.0.CO;2

BP plc. (2020). BP Statistical Review of World Energy 2020 (69th ed.). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf

U.S. Department of Energy. (2020). International Energy Outlook 2020. U.S. Energy Information Administration. https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf

Abdullah, A. M., & Islam, A. R. M. T. (2023). Current status of renewable energy in Bangladesh and future prospects: A global comparison. Heliyon, 9(3), e14308. https://doi.org/10.1016/j.heliyon.2023.e14308

Clerici, A., & Alimonti, G. (2015). World energy resources. EPJ Web of Conferences, 98, 1–15. https://doi.org/10.1051/epjconf/20159801001

Capuano, L. (2020). International Energy Outlook 2020 (IEO2020): United States milestones in meeting global energy consumption. U.S. Energy Information Administration. https://www.eia.gov/outlooks/ieo/pdf/ieo2020.pdf

Jessam, R. A. (2022). Experimental study of wind turbine power generation utilizing discharged air of air conditioner blower. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(4), 1103–1109. https://doi.org/10.5109/6625722

Kusnandar, V. B. (2022, June 10). Indonesian energy consumption by sector. Databoks. https://databoks.katadata.co.id/datapublish/2022/06/10/ini-sektor-dengan-konsumsi-energi-terbesar-di-ri-pada-2021

Badan Pusat Statistik. (2021). Energy balances of Indonesia 2016–2020. https://www.bps.go.id/en/publication/2021/12/16/349e26e73429084dc3c0663d/energy-balances-of-indonesia-2016-2020.html

Crabbe, E., Nolasco, H. C., Kobayashi, G., Sonomoto, K., & Ishizaki, A. (2001). Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochemistry, 37(1), 65–71. https://doi.org/10.1016/S0032-9592(01)00178-9

Susilawati, Zamzami, R., & Buchori, A. S. (2020). The utilization of waste cooking oil (WCO) in a simple stove as an alternative fuel for household scale. Journal of Physics: Conference Series, 1700(1), 1–5. https://doi.org/10.1088/1742-6596/1700/1/012052

Ramadhan, G. W., & Basyirun, B. (2020). The effect of air pressure on the burning temperature of used oil in stoves. Jurnal Dinamika Vokasional Teknik Mesin, 5(2), 163–168. https://doi.org/10.21831/dinamika.v5i2.34804

Nugroho, A. S., Rahayu, A. T., & Rubiandana, N. A. (2021). Experimental study of the effect of nozzle diameter on fuel combustion. Jurnal Mesin Industri & Otomotif, 2(2), 1–8. https://doi.org/10.46365/jmio.v2i02.435

Dinesha, P., Kumar, S., & Rosen, M. A. (2019). Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil. Renewable Energy, 136, 342–351. https://doi.org/10.1016/j.renene.2018.12.118

Sudarno, S., Soeparman, S., Wahyudi, S., & Widodo, A. S. (2021). Construction of a finned heat radiation reflector for improved efficiency of liquefied petroleum gas stoves. International Journal of Technology, 12(1), 163–174. https://doi.org/10.14716/ijtech.v12i1.3958

Widodo, A. S., Sudarno, S., Soeparman, S., & Wahyudi, S. (2022). The effect of finned heat reflector materials and diameters on the efficiency and temperature distribution of liquefied petroleum gas stove. Results in Engineering, 16, 100658. https://doi.org/10.1016/j.rineng.2022.100658

Sudarno, S., Soeparman, S., Wahyudi, S., & Widodo, A. S. (2021). Effect of the ember element in increasing the efficiency of liquefied petroleum gas stoves. Journal of Applied Engineering Science, 19(2), 1–8. https://doi.org/10.5937/jaes0-28385

World Bank. (1985). Test results on kerosene and other stoves for developing countries. http://documents.worldbank.org/curated/en/647871492128395293

U.S. Environmental Protection Agency. (2014). The water boiling test (Version 4.2.3). International Workshop Agreement. https://cleancookstoves.org/our-work/standards-and-testing/learn-about-testing-protocols/

Waluyo, J., Setianto, M. M., Safitri, N. R., Pranolo, S. H., Susanti, A. D., & Puryanto. (2023). Characterization of biochar briquettes from coconut shell with the effect of binder: Molasses, cow manure, and horse manure. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 539–545. https://doi.org/10.5109/6782158

Raman, P., Murali, J., Sakthivadivel, D., & Vigneswaran, V. S. (2013). Performance evaluation of three types of forced draft biomass cookstoves. Energy for Sustainable Development, 17(5), 497–506. https://doi.org/10.1016/j.esd.2013.05.007

Kartika, A., Kurniawan, A., & Krensa, A. (2023). Analysis of the temperature effect on the liquid's viscosity. Jurnal Penelitian dan Pembelajaran Fisika Indonesia, 5(1), 25–30. https://doi.org/10.29303/jppfi.v5i1.214

Wenhao, Z. (2021). Influence of temperature and concentration on viscosity of complex fluids. Journal of Physics: Conference Series, 1965(1), 012064. https://doi.org/10.1088/1742-6596/1965/1/012064

Zheng, F., Zhou, S., Xie, F., & Li, X. (2012). Analysis on lubricating and viscosity-temperature characteristics of the vegetable oil. Applied Mechanics and Materials, 184–185, 1451–1454. https://doi.org/10.4028/www.scientific.net/AMM.184-185.1451

Najib, A. I., Raid, A. A., Mazlan, A. W., Aminuddin, S., & Mohammed, B. A. (2023). Effect of preheating on combustion characteristics of a swirling flameless combustor. AIP Conference Proceedings, 2749(1). https://doi.org/10.1063/5.0136486

MacCarty, N., Still, D., & Ogle, D. (2010). Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. *Energy for Sustainable Development, 14*(3), 161-171. https://doi.org/10.1016/j.esd.2010.06.002

Almosawi, Y. J. K., & Alshimmary, W. A. K. (2021). Effect of air combustion preheater on furnace efficiency by using refinery simulator. *Journal of Petroleum Research and Studies, 7*(3), 75–87. https://doi.org/10.52716/jprs.v7i3.161

Ram, T., Santosh, B., & Subhash, L. (2020). Experimental investigation of effect of preheating of air and exhaust gas recirculation on four-stroke diesel engine. *IOP Conference Series: Materials Science and Engineering, 810*(1), 1-9. https://doi.org/10.1088/1757-899X/810/1/012032

Mourad, M., & Noureldenn, E. H. (2019). Benefits of exhaust gas energy for preheating biodiesel fuel to enhance engine emissions and performance. *Journal of Mechanical and Energy Engineering, 3*(2), 157–168. https://doi.org/10.30464/jmee.2019.3.2.157

Nadir, Y. (2012). Effects of intake air preheat and fuel blend ratio on a diesel engine operating on biodiesel–methanol blends. *Fuel, 94*, 444-447. https://doi.org/10.1016/j.fuel.2011.10.050

Cengel, Y. A., & Ghajar, A. J. (2015). *Heat and mass transfer: Fundamentals and applications* (5th ed.). McGraw-Hill Education.

Turns, S. R. (2011). *An introduction to combustion: Concepts and applications* (3rd ed.). McGraw-Hill Education.

Jhessica, M. F., Joel, G. T., Vitor, D. C. A., & Camila, D. S. (2019). Biodiesel from waste frying oils: Methods of production and purification. *Energy Conversion and Management, 184*, 205-218. https://doi.org/10.1016/j.enconman.2019.01.061

John, B. H. (2018). *Internal combustion engine fundamentals* (2nd ed.). McGraw Hill.

Published
2024/07/30
Section
Original Scientific Paper