ANALYSIS STUDY OF REINFORCED CONCRETE FRAME STRUCTURES WITH INFILL WALLS DUE TO LATERAL LOADS USING THE EQUIVALENT DIAGONAL STRUT AND FINITE ELEMENT METHOD

  • Yohanes Laka Suku University of Flores, Faculty of engineering, Department of civil engineering, East Nusa Tenggara Province, Indonesia
  • Veronika Miana Radja University of Flores, Faculty of engineering, Department of civil engineering, East Nusa Tenggara Province, Indonesia https://orcid.org/0009-0004-4055-315X
Keywords: infill wall, frame structure, reinforced concrete, equivalent diagonal strut, finite elements

Abstract


The analysis study of reinforced concrete frame structures with infill walls due to lateral loads using the equivalent diagonal strut (EDS) method proposed by Saneinejad & Hobbs (1995) aims to determine the accuracy in the analysis. This study began by evaluating reinforced concrete frame structures with infill walls as a result of the experiments of Mehrabi et al. (1994) using the finite element method (FEM). Then FEM analysis was carried out on the reinforced concrete frame structure by varying the hinf/linf of the infill walls with a ratio of 0.50, 0.67, 1.00 and 1.50. Next, the FEM analysis results will be evaluated using the EDS method. The analysis results show that the EDS method can predict the maximum lateral load close to the experimental results and FEM analysis. In the analysis using the EDS method, the friction coefficient (µ) and basic shear stress (ν) parameters greatly influence the strength of the infill wall.

References

J. Dias-Oliveira, H. Rodrigues, P. Asteris, and H. Varum, “On the Seismic Behavior of Masonry Infilled Frame Structures,” Buildings, vol. 12, no. 8, p. 1146, Aug. 2022, doi: 10.3390/buildings12081146.

Z. Wang, L. Xiong, G. Chen, M. Luo, and S. Zhang, “Out-of-plane performance of infilled frames with the improved flexible connection,” Journal of Building Engineering, vol. 51, p. 104286, Jul. 2022, doi: 10.1016/j.jobe.2022.104286.

S. Skafida, L. Koutas, and S. N. Bousias, “Analytical Modeling of Masonry Infilled RC Frames and Verification with Experimental Data,” Journal of Structures, vol. 2014, pp. 1–17, Apr. 2014, doi: 10.1155/2014/216549.

M. Sharma, Y. Singh, and H. V. Burton, “Parametric study on the collapse probability of modern reinforced concrete frames with infills,” Earthquake Spectra, vol. 39, no. 2, pp. 772–798, May 2023, doi: 10.1177/87552930231156462.

S.-D. Shen, J. Guo, P. Pan, Y.-R. Cao, and J.-X. Feng, “Bidirectional seismic performance and design approach of RC infill wall with PVC tubes,” Journal of Building Engineering, vol. 83, p. 108463, Apr. 2024, doi: 10.1016/j.jobe.2024.108463.

W. W. El-Dakhakhni, M. Elgaaly, and A. A. Hamid, “Three-Strut Model for Concrete Masonry-Infilled Steel Frames,” Journal of Structural Engineering, vol. 129, no. 2, pp. 177–185, Feb. 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:2(177).

W. W. El-Dakhakhni, A. A. Hamid, and M. Elgaaly, “Seismic Retrofit of Concrete-Masonry-Infilled Steel Frames with Glass Fiber-Reinforced Polymer Laminates,” Journal of Structural Engineering, vol. 130, no. 9, pp. 1343–1352, Sep. 2004, doi: 10.1061/(ASCE)0733-9445(2004)130:9(1343).

I. Haris and G. Farkas, “Experimental Results on Masonry Infilled RC Frames for Monotonic Increasing and Cyclic Lateral Load,” Periodica Polytechnica Civil Engineering, Apr. 2018, doi: 10.3311/PPci.10715.

G. Yang, E. Zhao, X. Li, E. Norouzzadeh Tochaei, K. Kan, and W. Zhang, “Research on Improved Equivalent Diagonal Strut Model for Masonry-Infilled RC Frame with Flexible Connection,” Advances in Civil Engineering, vol. 2019, 2019, doi: 10.1155/2019/3725373.

P. G. Asteris, D. J. Kakaletsis, C. Z. Chrysostomou, and E. E. Smyrou, “Failure Modes of In-filled Frames,” Electronic Journal of Structural Engineering, vol. 11, no. 1, pp. 11–20, 2011.

W. W. El-Dakhakhni, “Experimental and Analytical Seismic of Concrete Masonry-Infilled Steel Frames Retrofit Using GFRP Laminates,” Philadelphia, 2002.

I. Haris, “Experimental and numerical testing of masonry infilled reinforced concrete frames for static and quasi-static loads,” Budapest, 2013.

S. V. Polyakov, “On the interaction between masonry filler walls and enclosing frame when loading in the plane of the wall,” Translations in Earthquake Engineering, pp. 36–42, 1960.

M. Holmes, “Steel Frames With Brickwork And Concrete Infilling,” Proceedings of the Institution of Civil Engineers, vol. 19, no. 4, pp. 473–478, Aug. 1961, doi: 10.1680/iicep.1961.11305.

S. B. Smith, “Behaviour of square infilled frames,” Journal of the Structural Division, ASCE, vol. 92, pp. 381–403, 1966.

S. B. Smith and C. Carter, “A method of analysis for infilled frames,” Proc. of Instn. of Civ. Engrs., vol. 44, no. 1, pp. 31–48, 1969.

R. J. Mainstone, “On The Stiffness And Strengths Of Infilled Frames,” Proceedings of the Institution of Civil Engineers, vol. 49, no. 2, p. 230, Jun. 1971, doi: 10.1680/iicep.1971.6267.

T. Liauw and K. Kwan, “Plastic Theory Of Non Integral Infilled Frames,” Proceedings of the Institution of Civil Engineers, vol. 75, no. 3, pp. 379–396, Sep. 1983, doi: 10.1680/iicep.1983.1437.

A. Saneinejad and B. Hobbs, “Inelastic Design of Infilled Frames,” Journal of Structural Engineering, vol. 121, no. 4, pp. 634–650, Apr. 1995, doi: 10.1061/(ASCE)0733-9445(1995)121:4(634).

A. R. Amalia and D. Iranata, “Comparative study on diagonal equivalent methods of masonry infill panel,” in AIP Conference Proceedings, American Institute of Physics Inc., Jun. 2017. doi: 10.1063/1.4985481.

P. G. Asteris, S. T. Antoniou, D. S. Sophianopoulos, and C. Z. Chrysostomou, “Mathematical Macromodeling of Infilled Frames: State of the Art,” Journal of Structural Engineering, vol. 137, no. 12, pp. 1508–1517, Dec. 2011, doi: 10.1061/(ASCE)ST.1943-541X.0000384.

F. J. Crisafulli, A. J. Carr, and R. Park, “Analytical modelling of infilled frame structures-A general review,” Bulletin Of The New Zealand Society For Earthquake Engineering, vol. 33, no. 1, pp. 30–47, Mar. 2000, [Online]. Available: https://www.researchgate.net/publication/283858084

F. Novika, I. Maulidi, B. Marsanto, and A. N. Amalina, “Comparasion Model Analysis Time of Earthquake Occurrence in Indonesia based on Hazard Rate with Single Decrement Method,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 6, no. 1, p. 163, Jan. 2022, doi: 10.31764/jtam.v6i1.5535.

Y. L. Suku and K. Je, “Modeling and Analysis of the Effect of Holes in Reinforced Concrete Column Structures,” Journal of the Civil Engineering Forum, vol. 6, no. 1, p. 27, 2020, doi: 10.22146/jcef.48722.

Y. L. Suku and V. M. Radja, “Stability of substructure Malapedho Bridge in Ngada Regency, East Nusa Tenggara Province,” Multidiscip. Sci. J, vol. 6, p. 2024263, 2024, doi: 10.31893/multiscience.2024263.

A. B. Mehrabi, P. B. Shing, M. P. Schuller, and J. L. Noland, “Performance Of Masonry-Infilled R/C Frames Under In-Plane Lateral Loads,” Colorado, Oct. 1994.

K. Choon and J. M. Ingham, “Shear Strength of Concrete Masonry Walls,” New Zealand, 2003. [Online]. Available: www.cee.auckland.ac.nz

A. D. Dautaj, A. Muriqi, C. Krasniqi, and B. Shatri, “Shear resistance of masonry panel in infilled RC frames,” International Journal of Advanced Structural Engineering, vol. 11, no. 2, pp. 165–177, Jun. 2019, doi: 10.1007/s40091-019-0223-7.

A. T. Vermeltfoort, “Variation in shear properties of masonry,” Proceedings of 8th International Masonry Conference, Jul. 2010.

L. Lavado and J. Gallardo, “Shear strength of brick mortar interface for masonry in Lima city,” TECNIA, vol. 29, no. 2, Aug. 2019, doi: 10.21754/tecnia.v29i2.707.

T. Paulay and M. J. N. Priestly, Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, 1992. doi: 10.1002/9780470172841.

P. B. Lourenço, J. O. Barros, and J. T. Oliveira, “Shear testing of stack bonded masonry,” Constr Build Mater, vol. 18, no. 2, pp. 125–132, Mar. 2004, doi: 10.1016/j.conbuildmat.2003.08.018.

L. S. R. A. M. F. M. A. Abdou, “Experimental Investigations of The Joint-Mortar Behavior ,” Mechanics Research Communication, vol. 33, no. 3, pp. 370–384, 2006.

Published
2025/02/10
Section
Original Scientific Paper