CYLINDER AND PISTON: MATERIAL SELECTION IN THE DESIGN PHASE

Keywords: material for cylinder and piston manufacturing, MCDM, CoCoSo, sensitivity analysis

Abstract


The piston and cylinder constitute an inseparable pair, playing a crucial role in both the mechanical and hydraulic industries. They are frequently employed to convert linear motion into rotational motion in various types of engines and are especially valuable for heavy-duty applications. Material selection for these components is conducted during the product design phase. This study aimed to identify the optimal material for each type of product. To determine the best material, a ranking of materials was carried out using the CoCoSo (COmbined COmpromise SOlution) method, with scores for criteria calculated using the Entropy method. Nine materials for cylinder construction were evaluated, including S355JR, S275JR, S235JR, BS97007M20, R35, R45, IS1030GRADE, AISI304, and 60-40-18. Additionally, seven materials for piston construction were considered: 332-T5, A336, 242-T5, 333.0-F, A213.0 F, AISI308, and A319.0F. The Entropy-CoCoSo approach was employed to rank the materials for each case (cylinder material and piston material). The results indicated that AISI304 is the optimal material for cylinder manufacturing, while A336 is the best material for piston manufacturing. Furthermore, the study extensively examined the impact of different weighting methods (Entropy, WENSLO, CRITIC, ROC, RS, EW) and normalization techniques (sum, vector, max, max-min, peldschus, decimal) on CoCoSo method results using an innovative sensitivity analysis approach, analyzing the techniques according to their sensitivity levels.

References

Alshalal, I., Al-Zuhairi, H. M. I., Abtan, A. A., Rasheed, M., Asmail, M. K. (2023). Characterization of wear and fatigue behavior of aluminum piston alloy using alumina nanoparticles. Journal of the Mechanical Behavior of Materials, vol. 32, no. 1, 1-7. DOI:10.1515/jmbm-2022-0280

Skryabin, M. L., Kuklin, S. M. (2020). Peculiarities of choice of materials for pistons of heat engines. IOP Conference Series: Materials Science and Engineering, vol. 862, No. 3, 1-5. DOI:10.1088/1757-899X/862/3/032096

Byun, H. S., Lee, S. H. (2017). Design of a piston forging process using a hybrid Taguchi method and multiple criteria decision-making. Journal of Mechanical Science and Technology, vol. 31, 1869-1876. DOI:10.1007/s12206-017-0334-7

Khatke, S., Fulzele, S., Kadam, S., Kamble, A. (2021). The selection of hydraulic cylinder using multi-attribute decision-making methods. Journal of Physical Chemistry & Biophysics, vol. 11, no. 7, 1-8, DOI:10.2139/ssrn.3964510

Mahle GmbH. (2016a). Crankcase and cylinder liners. Braun, M. (Ed.), Cylinder components. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden, pp. 97-128.

Ali, A. M. (2023). A multi-criteria decision-making approach for piston material selection under single-valued trapezoidal neutrosophic sets. Neutrosophic and Information Fusion, vol. 2, no. 1, 23-34. DOI:10.54216/NIF.020102

Mahle GmbH. (2016b). Piston pins and piston pin circlips. In: Cylinder components. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden, pp. 25-46.

Yazdani, M., Zavadskas, E. K., Ignatius, J., Abad, M. D. (2016). Sensitivity analysis in MADM methods: Application of material selection. Inzinerine Ekonomika-Engineering Economics, vol. 27, no. 4, 382–391, DOI:10.5755/j01.ee.27.4.14005

Fattouh, M. (2023). Hybrid MCDM model of ARAS-TOPSIS-GRA for materials selection problem. Journal of Engineering Research, vol. 7, no. 2, 1-9. DOI:10.21608/ERJENG.2023.200188.1164

Peng, C., Feng, D., Guo, S. (2021). Material selection in green design: A method combining DEA and TOPSIS. Sustainability, vol. 13, no. 10, 1-14. DOI:10.3390/su13105497

Bhaskar, S., Kumar, M., Patnaik, A. (2023). Ranking optimization investigation using hybrid AHP-TOPSIS MCDM technique on hybrid AA2024―Ceramic Particulate Alloy Composite Materials Prepared through Stir Casting. DOI:10.21203/rs.3.rs-2593385/v1

Zakeri, S., Chatterjee, P., Konstantas, D., Ecer, F. (2023). A decision analysis model for material selection using simple ranking process. Scientific Reports, vol. 13, no. 1, 1-34, DOI:10.1038/s41598-023-35405-z

Rahim, A. A., Musa, S. N., Ramesh, S., Lim, M. K. (2021). Development of a fuzzy-TOPSIS multi-criteria decision-making model for material selection with the integration of safety, health and environment risk assessment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(7), 1532-1550. DOI:10.1177/1464420721994269

Fulzele, S. B., Khatke, S. B., Kadam, S. J., Kamble, A. G. (2022). Application of multi-attribute decision-making methods for the selection of conveyor. Soft Computing, vol. 26, no. 19, 9873-9881. DOI:10.21203/rs.3.rs-1033410/v2

Chatterjee, S., Chakraborty, S. (2023). Application of the R method in solving material handling equipment selection problems. Decision Making: Applications in Management and Engineering, vol. 6, no. 2) 74-94. DOI:10.31181/dmame622023391.

Lohakare, P., Bewoor, A., Kumar, R., Said, N. M., Sharifpur, M. (2022). Benchmark using multi criteria decision making (MCDM) technique to optimally select piston material. Engineering Analysis with Boundary Elements, vol. 142, 52-60. DOI:10.1016/j.enganabound.2022.05.025

Ramachandran, M., Ragavendran, U., Fegade, V. (2018). Selection of used piston for remanufacturing using fuzzy TOPSIS optimization. Antonio J. Tallón-Ballesteros, Kaicheng Li (Eds.), Fuzzy Systems and Data Mining IV, IOS Press, pp. 61-67.

Chatterjee, S., Chakraborty, S. (2022). A multi-attributive ideal-real comparative analysis-based approach for piston material selection. Opsearch, vol. 59, no. 1, 207-228. DOI:10.1007/s12597-021-00536-2.

Dev, S., Aherwar, A., Patnaik, A. (2020). Material selection for automotive piston component using Entropy-VIKOR method. Silicon, vol. 12, no. 1, 155-169. DOI:10.1007/s12633-019-00110-y.

Li, A., Zhao, J., Gong, Z., Lin, F. (2016). Optimal selection of cutting tool materials based on multi-criteria decision-making methods in machining al-si piston alloy. The International Journal of Advanced Manufacturing Technology, vol. 86, 1055-1062. DOI:10.1007/s00170-015-8200-1

Chaitanya, K. L., Srinivas, K. (2019). Sensitive analysis on selection of piston material using MADM techniques. Strojnícky časopis-Journal of Mechanical Engineering, vol. 69, no. 4, 45-56. DOI:10.2478/scjme-2019-0042.

Megel, M. C., Bailey, G. E. (2014). Material and process selection—cylinder blocks and heads. Encyclopedia of Automotive Engineering, 1-10. DOI:10.1002/9781118354179.auto135

Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., Turskis, Z. (2019a). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, vol. 57, no. 9, 2501-2519. DOI:10.1108/MD-05-2017-0458

Topal, A. (2021). Financial performance analysis of electricity generation companies with multi-criteria decision making: Entropy-based Cocoso method. Business & Management Studies: An International Journal, vol. 9, no. 2, 532-546. DOI:10.15295/bmij.v9i2.1794

Ulutaş, A., Balo, F., Sua, L., Karabasevic, D., Stanujkic, D., Popovic, G. (2021a). Selection of insulation materials with PSI-CRITIC based CoCoSo method. Revista de la Construcción, vol. 20, no. 2, 382-392. DOI:10.7764/RDLC.20.2.382

Tirkolaee, E. B., Torkayesh, A. E. (2022). A cluster-based stratified hybrid decision support model under uncertainty: sustainable healthcare landfill location selection. Applied Intelligence, vol. 52, no. 12, 13614-13633. DOI:10.1007/s10489-022-03335-4

Yazdani, M., Wen, Z., Liao, H., Banaitis, A., Turskis, Z. (2019b). A grey combined compromise solution (CoCoSo-G) Method for supplier selection in construction management. Journal of Civil Engineering and Management, vol. 25, no. 8, 858-874. DOI:10.3846/jcem.2019.11309

Peng, X., Huang, H. (2020). Fuzzy decision making method based on CoCoSo with CRITIC for financial risk evaluation. Technological and Economic Development of Economy, vol. 26, no. 4, 695-724. DOI:10.3846/tede.2020.11920

Ulutaş, A., Popovic, G., Radanov, P., Stanujkic, D., Karabasevic, D. (2021b). A new hybrid fuzzy PSI-PIPRECIA-CoCoSo MCDM based approach to solving the transportation company selection problem. Technological and Economic Development of Economy, vol. 27, no. 5, 1227-1249. DOI:10.3846/tede.2021.15058

Purohit, P., Ramachandran, M. (2015). Selection of fywheel material using multicriteria decision making fuzzy TOPSIS. Indian J. Sci. Technol. Vol. 8, no. 33, 1–5. DOİ: 10.17485/ijst/2015/v8i33/80028

Maity, R., Mishra, R., Pattnaik, P. K., Pandey, A. (2023). Selection of sustainable material for the construction of UAV aerodynamic wing using MCDM technique. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.12.025.

Kumar, R., Ray, A. (2015). Optimal selection of material an eclectic decision. J. Inst. Eng. (India): Series C, vol. 96, no. 1, 29–33. DOİ:10.1007/s40032-014-0123-3

Bhattacharyya, O., Chakraborty, S. (2015). Q-analysis in materials selection. Decis. Sci. Letts., vol. 4, no. 1, 51–62. DOİ:10.5267/j.dsl.2014.9.001.

Hosouli, S., Elvins, J., Searle, J., Boudjabeur, S., Bowyer, J., Jewell, E. (2023). A multi-criteria decision making (MCDM) methodology for high temperature thermochemical storage material selection using graph theory and matrix approach. Materials & Design, vol. 227, no. 2023, 1-10. DOI:10.1016/j.matdes.2023.111685

Das, D., Bhattacharya, S., Sarkar, B. (2016). Decision-based design-driven material selection: A normativeprescriptive approach for simultaneous selection of material and geometric variables in gear design. Mater. Des., vol. 92, 787–793. DOİ:10.1016/j.matdes.2015.12.064.

Yazdani, M., Jahan, A., Zavadskas, E.K. (2017). Analysis in material selection: influence of normalization tools on COPRAS-G. Econ. Comput. Econ. Cybern. Stud. Res., vol. 1, no. 51, 1–16.

Moradian, M., Modanloo, V., Aghaiee, S. (2018). Comparative analysis of multi criteria decision making techniques for material selection of brake booster valve body. J. Trafc Transp. Eng., vol. 6, no. 5, 526–534. DOİ:10.1016/j.jtte.2018.02.001

Zindani, D., Maity, S.R., Bhowmik, S., Chakraborty, S. (2017). A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis. Int. J. Mater. Res., vol. 108, no. 5, 345–354. DOİ:10.3139/146.111489

Van Dua, T., Van Duc, D., Bao, N. C. (2024). Integration of objective weighting methods for criteria and MCDM methods: Application in material selection. EUREKA: Physics and Engineering, no. 2, 131-148. DOI:10.21303/2461-4262.2024.003171

Kumar, S., Ahijith Kumar, P. V., Bharti, K., Patnaik, L., Ranjan Maity, S., Łepicka, M. (2024). Coating material selection for bulk metal forming dies: A MEREC-integrated approach with multiple MCDM methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-16. DOI:10.1007/s12008-024-02044-1

Omosa, G. B., Mwema, F. M., Akinlabi, E. T., Jen, T. C., Mutua, J. M. (2024). Matrix‐phase material selection for shape memory polymer composites: A comparative analysis of multi‐criteria decision‐making. Polymer Engineering & Science, vol. 64, no. 7, 3363-3378. DOI:10.1002/pen.26775

Hassan, R., Arfeen, Z. A., Azam, M. K., Akhtar, Z. U. A., Siddique, A., Rashid, M. (2024). Determination of the best materials for development and designing product using a multi-criteria decision-making. Railway Sciences. Vol. ahead-of-print No. ahead-of-print. DOI:10.1108/RS-12-2023-0050

Alinezhad, A., Khalili, J. (2024). MCDM, DEA, and their relationship in materials selection. Jain, P., Abhishek, K. Chatterjee, P. (Eds.), Decision-Making Models and Applications in Manufacturing Environments, Apple Academic Press, pp. 1-45.

Şahin, M. (2024). Ensemble multi-attribute decision-making for material selection problems. Soft Computing, vol. 28, no. 6, 5437-5460. DOI:10.1007/s00500-023-09296-1

Mikic, D., Desnica, E., Asonja, A., Stojanovic, B., Epifanic-Pajic, V. (2016). Reliability analysis of ball bearing on the crankshaft of piston compressors. Journal of the Balkan Tribological Association, vol. 22, no. 4, 5060–5070.

Wang, Z., Baydaş, M., Stević, Ž., Özçil, A., Irfan, S. A., Wu, Z., Rangaiah, G. P. (2023). Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods. Demonstratio Mathematica, vol. 56, no. 1, 20230117.

Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathematical Modelling, vol. 34, no. 7, 1779-1787. DOI:10.1016/j.apm.2009.09.022

Zeleny, M. (1982). Multiple Criteria Decision Making, McGraw-Hill, New York.

Hussain, S. A. I., Chandra, H., Mandal, U. K. (2022). Comparison of cross-entropy based MCDM approach for selection of material in sugar industry, Márquez, F. P. G. (Ed.), Advances in Decision Making, pp. 1-25.

Zhu, Y., Tian, D., Yan, F. (2020). Effectiveness of Entropy weight method in decision‐making. Mathematical Problems in Engineering, vol. 2020, no. 1, 1-5. DOI:10.1155/2020/3564835

Puška, A., Lukić, M., Božanić, D., Nedeljković, M., Hezam, I. M. (2023). Selection of an insurance company in agriculture through hybrid multi-criteria decision-making. Entropy, vol. 25, no. 6, 1-19. DOI:10.3390/e25060959

Trung, D. D., Thinh, H. X. (2021). A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Advances in Production Engineering & Management, vol. 16, no. 4, 443-456. DOI:10.14743/apem2021.4.412

Thinh, X. H. (2023). Multi-objective optimization of turning process by FUCA method. Strojnícky Časopis-Journal of Mechanical Engineering, vol. 73, no. 1, 55-66. DOI:10.2478/scjme-2023-0005

Adalı, E. A., Işık, A. T. (2017). CRITIC and MAUT methods for the contract manufacturer selection problem. European Journal of Multidisciplinary Studies, vol. 2, no. 5, 88-96. DOI:10.26417/ejms.v5i1.p93-101

Gunantara, N. (2018). A review of multi-objective optimization: methods and its applications. Cogent Engineering, vol. 5, no. 1, 1502242. DOI:10.1080/23311916.2018.1502242

Ecer, F., Küçükönder, H., Kayapınar Kaya, S., Görçün, Ö.F. (2023). Sustainability performance analysis of micromobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation Research Part A: Policy and Practice, vol. 172, 103667, DOİ: 10.1016/J.TRA.2023.103667.

Pamucar, D., Ecer, F., Gligorić, Z., Gligorić, M., Deveci, M. (2023). A novel WENSLO and ALWAS multicriteria methodology and its application to green growth performance evaluation. IEEE Transactions on Engineering Management, vol. 71, no. 2024, 9510-9525. DOİ: 10.1109/TEM.2023.3321697

Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., Bahraminasab, M. (2012). A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, no. 58, 411-420. DOI:10.1007/s00170-011-3366-7

Wang, C. N., Le, T. Q., Chang, K. H., Dang, T. T. (2022). Measuring road transport sustainability using MCDM-based Entropy objective weighting method. Symmetry, vol. 14, no. 5, 1-19. DOI:10.3390/sym14051033

Ecer, F., Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, no. 112, 102690. DOI:10.1016/j.omega.2022.102690

Elma, O. E., Stević, Ž., Baydaş, M. (2024). An Alternative Sensitivity Analysis for the Evaluation of MCDA Applications: The significance of brand value in the comparative financial performance analysis of BIST high-end companies. Mathematics, 12(4), 520. DOI:10.3390/math12040520

Mhlanga, S. T., Lall, M. (2022). Influence of normalization techniques on multi-criteria decision-making methods. Journal of Physics: Conference Series, vol. 2224, no. 1, 1-12. DOI 10.1088/1742-6596/2224/1/012076

Aytekin, A. (2021). Comparative analysis of the normalization techniques in the context of MCDM problems. Decision Making: Applications in Management and Engineering, vol. 4, no. 2, 1-25. DOI:10.31181/dmame210402001a

Vafaei, N., Ribeiro, R. A., Camarinha-Matos, L. M. (2020). Selecting normalization techniques for the analytical hierarchy process. Doctoral Conference on Computing, In Electrical and Industrial Systems, 43-52, Springer.

Wang Y.M.M., Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Math Comput Model, vol. 51, no. 1–2, 1–12. DOİ:10.1016/j.mcm.2009.07.016

Van Delft, A., Nijkamp, P. (1977). Multi-Criteria Analysis and Regional Decision-Making, Studies in Applied Regional Science, Springer.

Stopp, F. (1975). Variantenvergleich durch Matrixspiele, Wissenschaftliche Zeitschrift der Hochschule für Bauwesen Leipzig, Heft 2.

Weitendorf, D. (1976). Beitrag Zur Optimierung der Räumlichen Struktur Eines Gebäudes. Hochschule für Architektur und Bauwesen, Weimar.

Zavadskas, E. K., Turskis, Z. (2008). A new logarithmic normalization method in games theory. Informatica, Lith. Acad. Sci., vol. 19, no. 2, 303-314.

Han, J., Kamber, M. (2006). Data Mining: Concepts and Techniques. 2 nd ed, Elsevier: San Francisco, USA

B2bmart (2024). https://b2bmart.vn/kinh-nghiem/d1393-vat-lieu-che-tao-xi-lanh-thuy-luc.html [Accessed on 08/10/2024]

Markatos, D. N., Malefaki, S., Pantelakis, S. G. (2023). Sensitivity analysis of a hybrid MCDM model for sustainability assessment—an example from the aviation industry. Aerospace, vol. 10, no. 4, 385. DOI:10.3390/aerospace10040385

Mukhametzyanov, I., Pamucar, D. (2018). A sensitivity analysis in MCDM problems: A statistical approach. Decision Making: Applications in Management and Engineering, vol. 1, no. 2, 51-80. DOI:10.31181/dmame1802050m

Stević, Ž., Baydaş, M., Kavacık, M., Ayhan, E., Marinković, D. (2024). Selection of data conversion technique via sensitıvity-performance matching: Rankıng of small e-vans with PROBID method. Facta Universitatis, Series: Mechanical Engineering, 1-29. DOİ:10.22190/FUME240305023S.

Baydas, M., Kavacık, M., Wang, Z. Y. (2024). Does the performance of MCDM rankings increase as sensitivity decreases? graphics card selection and pattern discovery using the PROBID method. J. Intell Manag. Decis, vol. 3, no. 2, 91-103. DOI:10.56578/jimd030203

Published
2024/11/14
Section
Original Scientific Paper