IMPACT OF GREEN MOBILITY ON THE ELECTRIC POWER SYSTEM: A NUMERICAL ANALYSIS IN A 2030 SCENARIO
Abstract
In this paper, a methodology is proposed to evaluate the impact on the Italian electric power system deriving from the increasing adoption of Battery Electric Vehicles (BEVs). To this purpose, a case study that involves the Lombardy region in a 2030 scenario is analyzed. To accurately estimate travel habits within the region, datasets publicly available were used, complementing them with suitable energetic models of BEVs. Detailed data about the journeys traveled by commuters in the region, distinguished by reason to move and modes of transport, were provided in input to an online routing machine to extract significant information about the vehicle’s instantaneous speed, length, and duration of each trip. This allowed for an accurate assessment of the energy and power requirements of private electric mobility in a 2030 scenario. The quantities in output to the analysis can be effectively used by transmission and distribution network operators to identify the issues that could arise on the grid due to increased demand related to electric vehicles. In addition, these analyses can support the proper design and planning of all the reinforcement actions needed on the electrical grid to improve its capability to supply the energy and power required during the charging processes.
References
European Environment Agency (2024). Electric Vehicles. Available online: https://www.eea.europa.eu/en/topics/in-depth/electric-vehicles
Gil Ribeiro, C., Silveira, S. (2024). The impact of financial incentives on the total cost of ownership of electric light commercial vehicles in EU countries. Transportation Research, Part A, 179, 103936, DOI: 10.1016/j.tra.2023.103936.
European Environment Agency (2022). Use of renewable energy for transport in Europe. Available online: https://www.eea.europa.eu/ims/use-of-renewable-energy-for.
Juan, A.A., Mendez, C.A., Faulin, J., De Armas, J., Grasman, S.E. (2016). Electric vehicles in logistics and transportation: a survey on emerging environmental, strategic, and operational challenges. Energies, 9, 1–21, DOI: 10.3390/en9020086.
Roumboutsos, A., Kapros,S., Vanelslander, T. (2014). Green city logistics: systems of innovation to assess the potential of E-vehicles. Res. Transp. Bus. Manag. 11, 43–52, DOI: 10.1016/j.rtbm.2014.06.005.
Wang, M, Thoben, K.-D., Bernardo, M., Daudi, M. (2018). Diversity in employment of electric commercial vehicles in urban freight transport: A literature review. Logistics Research, ISSN 1865-0368, Bundesvereinigung Logistik (BVL), Bremen, Vol. 11, Iss. 10, pp. 1-13, DOI: 10.23773/2018_10.
Srivastava, A., Kumar, R.R., Chakraborty, A., Mateen, A., Narayanamurthy, G. (2022). Design and selection of government policies for electric vehicles adoption: A global perspective. Transportation Research, Part E, 161, 102726, DOI: 10.1016/j.tre.2022.102726.
Chemama, J., Cohen, M.C., Lobel, R., Perakis, G. (2019). Consumer subsidies with a strategic supplier: Commitment vs. flexibility. Management Science, 65 (2), 681–713, DOI: 10.1287/mnsc.2017.2962.
Lévay, P.Z., Drossinos, Y., Thiel, C. (2017). The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership. Energy Policy 105, 524–533, DOI: 10.1016/j.enpol.2017.02.054.
Eurostat (2023). 1.5 million new battery-only electric cars in 2023. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20240802-1.
Motus-e website, from https://www.motus-e.org/, accessed on 2025-02-03.
European Alternative Fuels Observatory (2024). New Study on Accelerating EU Electric Vehicle Charging Infrastructure Roll-out. Available online: https://alternative-fuels-observatory.ec.europa.eu/general-information/news/new-study-accelerating-eu-electric-vehicle-charging-infrastructure-roll.
European Commission (2024). Launch of the Route 35 platform | Our priorities for achieving our electrification goals | Speech by Commissioner Thierry Breton. Available online: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_7785.
Metais, M.O., Jouini, O., Perez, Y., Berrada, J. (2024). From user to operator: Rationalizing the charging infrastructure deployment. A case study of Berlin. Applied Energy, Vol. 376, Part B, 124133, DOI: 10.1016/j.apenergy.2024.124133.
Wolbertus, R., Jansen, S., Kroesen, M. (2020). Stakeholders’ perspectives on future electric vehicle charging infrastructure developments”. Futures, Vol. 123, DOI: 10.1016/j.futures.2020.102610.
He, S.Y., Kuo, Y.H., Wu, D. (2016). Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing. Transportation Research Part C: Emerging Technologies, DOI: 10.1016/j.trc.2016.02.003
Huang, K., Kanaroglou, P., Zhang, X. (2016). The design of electric vehicle charging network. Transportation Research Part D: Transport and Environment, 13619209, 49, pp. 1-17, DOI:10.1016/j.trd.2016.08.028.
Pisano, G., Ruggeri, S., Soma, G.G., Falabretti, D., Grillo, S., Gulotta, F., Pilo, F. (2023). Impact of Electrical Vehicle Private Charging Stations on the Quality of the Low Voltage Network Supply. IEEE Open Access Journal of Power and Energy, Vol. 10, Pages 351, DOI: 10.1109/OAJPE.2023.3258254.
Manríquez, F., Sauma, E., Aguado, J., de la Torre, S., Contreras, J. (2020). The impact of electric vehicle charging schemes in power system expansion planning. Applied Energy, Vol. 262, DOI: 10.1016/j.apenergy.2020.114527
Babrowski, S., Heinrichs, H., Jochem, P., Fichtner, W. (2014). Load shift potential of electric vehicles in Europe. J Power Sources, 255, pp. 283-293, DOI: 10.1016/j.jpowsour.2014.01.019.
Benetti, G., Delfanti, M., Facchinetti, T., Falabretti, D., Merlo, M. (2015). Real-Time Modeling and Control of Electric Vehicles Charging Processes. IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1375-1385, DOI: 10.1109/TSG.2014.2376573.
Azadfar, E., Sreeram, V., Harries, D. (2014). The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour. Renewable and Sustainable Energy Review, 42, pp. 1065-1076, DOI: 10.1016/j.rser.2014.10.058.
Langbroek, J.H.M., Franklin, J.P., Susilo, Y.O. (2017). When do you change your electric vehicle? A stated adaptation approach. Energy Policy, 108 (Supplement C), pp. 565-573, DOI: 10.1016/j.enpol.2017.06.023.
Falabretti, D., Gulotta, F., Siface, D. (2023). Scheduling and operation of RES-based virtual power plants with e-mobility: A novel integrated stochastic model. International Journal of Electrical Power and Energy Systems, Volume 144, 108604, DOI: 10.1016/j.ijepes.2022.108604.
Falabretti, D., Gulotta, F. (2022). A Nature-Inspired Algorithm to Enable the E-Mobility Participation in the Ancillary Service Market. Energies, Volume 15, Issue 9, DOI: 10.3390/en15093023.
Regione Lombardia. Open Data Regione Lombardia. Matrice OD 2030 – Passeggeri. Available online: https://www.dati.lombardia.it/Mobilit-e-trasporti/Matrice-OD2030-Passeggeri/sht7-5jd5/data?no_mobile=true.
Regione Lombardia. Programma Regionale della Mobilità e dei Trasporti. [Online]. Available: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioRedazionale/istituzione/direzioni-generali/Direzione+generale+Infrastrutture+e+opere+pubbliche/programma-regionale-mobilita-trasporti/
OSRM API. Documentation. Available online: https://project-osrm.org/.
OpenStreetMap. Ways for node: GET /api/0.6/node/#id/ways. Available online: https://wiki.openstreetmap.org/.
InsideEVs (2022). Le auto elettriche più vendute in Italia nel 2021: la top 50. Available online: https://insideevs.it/.
InsideEVs (2023). Le auto elettriche più vendute in Italia nel 2022: la top 50. Available online: https://insideevs.it/.
QuotidianoMotori (2023). Le auto elettriche più vendute in Italia nel 2023: dopo Tesla c’è Fiat. Available online: https://www.quotidianomotori.com/.
European Union (2007). Regulation (EU) 2017/1151 – supplementing Regulation (EC) No 715/2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information. Available online: https://eur-lex.europa.eu/
GreenStart (2020). La relazione fra potenza, consumo, velocità e autonomia nelle auto elettriche. Available online: https://www.greenstart.it/.
MASE (2023). PNIEC 2023. Available online: https://www.mase.gov.it/sites/default/files/PNIEC_2023.pdf.
Terna – Snam (2024). Documento di Descrizione degli Scenari 2024. Available online: https://www.terna.it/it/sistema-elettrico/programmazione-territoriale-efficiente/piano-sviluppo-rete/scenari.
ISFORT (2022). 19° rapporto sulla mobilità degli italiani. Available online: https://www.isfort.it/wp-content/uploads/2023/01/221215_RapportoMobilita2022_Def-1.pdf.
Regione Lombardia (2022). PREAC - Allegato 7, penetrazione delle tecnologie. Available online: https://www.regione.lombardia.it/.