EVALUATING DESIGN AND MATERIAL EFFECTS ON COMMERCIAL HIP IMPLANT PERFORMANCE USING FINITE ELEMENT ANALYSIS
Abstract
This study presents a comprehensive finite element analysis of commercial hip implants, emphasizing the influence of geometric configurations and material selection on structural performance under static loading. The investigation considered two distinct stem geometry-oval and mixed profiles and evaluated two biomaterials, cobalt-chromium alloy and Ti-6Al-4V alloy, in metal-on-metal configurations. Commercial hip implant models were developed using CREO software and meshed with optimized grid parameters, adhering to ASTM F2996-13 standards for boundary and load conditions. The primary performance metrics analyzed included total deformation, von Mises stress, and elastic strain, indicating structural stability and load-bearing capacity. The results revealed that the oval CoCr stem demonstrated superior mechanical characteristics, exhibiting the lowest deformation (0.078 mm), stress (243.24 MPa), and elastic strain (0.00121 mm/mm), underscoring the biomechanical advantage of the optimized geometry combined with stable biomaterials. The findings highlight that implant geometry significantly affects load distribution and stress concentration, with oval geometries promoting more efficient load transfer. Furthermore, the study underscores the critical role of material properties of CoCr alloys, offering enhanced structural integrity over Ti-6Al-4V. Although the current analysis omits wear, micromotion effects, and surface coating influences, the results lay a foundation for future dynamic loading models for wear analysis and coating strategies. Integrating these parameters could further improve implant longevity and patient outcome. Ultimately, this research advances the understanding of design strategies to optimize implant durability, reduce revision rates, and inform future orthopedic implant innovations.
References
G.S. Man, G. Mologhianu, Osteoarthritis pathogenesis - a complex process that involves the entire joint., J. Med. Life 7 (2014) 37–41.
Q. Guo, Y. Wang, D. Xu, J. Nossent, N.J. Pavlos, J. Xu, Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies, Bone Res. 6 (2018). https://doi.org/10.1038/s41413-018-0016-9.
P. Fardellone, E. Salawati, L. Le Monnier, V. Goëb, Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: A review, J. Clin. Med. 9 (2020) 1–18. https://doi.org/10.3390/jcm9103361.
D. Soloviev, L. Maslov, M. Zhmaylo, Acetabular Implant Finite Element Simulation with Customised Estimate of Bone Properties, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16010398.
S. Affatato, A. Ruggiero, M. Merola, Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings, Compos. Part B Eng. 83 (2015) 276–283. https://doi.org/10.1016/j.compositesb.2015.07.019.
M.L.M. Daniela Milagros Anticona, Jose Luis Serna Landivar, William Algoner, Static, Transient, and Fatigue Design and Analysis of a Hip Femoral Stem Using the Finite Element Method., (n.d.).
A. Jahnke, T. Harz, C.A. Fonseca Ulloa, B.A. Ishaque, M. Rickert, Development and Finite Element (FE) analysis of a novel short hip stem concept, J. Orthop. 46 (2023) 117–123. https://doi.org/10.1016/j.jor.2023.09.016.
S.M. Darwish, A.M. Al-Samhan, Optimization of artificial hip joint parameters, Materwiss. Werksttech. 40 (2009) 218–223. https://doi.org/10.1002/mawe.200900430.
A.K. Bhawe, K.M. Shah, S. Somani, S. Shenoy B, S. Bhat N, M. Zuber, Chethan, Static structural analysis of the effect of change in femoral head sizes used in Total Hip Arthroplasty using finite element method, Cogent Eng. 9 (2022). https://doi.org/10.1080/23311916.2022.2027080.
U. Anil, V. Singh, R. Schwarzkopf, Diagnosis and Detection of Subtle Aseptic Loosening in Total Hip Arthroplasty, J. Arthroplasty 37 (2022) 1494–1500. https://doi.org/10.1016/j.arth.2022.02.060.
C. Delaunay, I. Petit, I.D. Learmonth, P. Oger, P.A. Vendittoli, Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium ions release concern, Orthop. Traumatol. Surg. Res. 96 (2010) 894–904. https://doi.org/10.1016/j.otsr.2010.05.008.
F. Schönweger, C.M. Sprecher, S. Milz, C. Dommann-Scherrer, C. Meier, A. Dommann, A. Neels, P. Wahl, New insights into osteointegration and delamination from a multidisciplinary investigation of a failed hydroxyapatite-coated hip joint replacement, Materials (Basel). 13 (2020) 1–17. https://doi.org/10.3390/ma13214713.
Chethan, S. Bhat N, M. Zuber, S. Shenoy B, Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review, Cogent Eng. 9 (2022). https://doi.org/10.1080/23311916.2022.2027081.
T. Hidayat, M.I. Ammarullah, E. Saputra, M.D.P. Lamura, C. K N, R. Ismail, A.P. Bayuseno, J. Jamari, A method for estimating the contact area of a dual-mobility total hip prosthesis, AIP Adv. 14 (2024). https://doi.org/10.1063/5.0188638.
L. Guo, S. Ataollah Naghavi, Z. Wang, S. Nath Varma, Z. Han, Z. Yao, L. Wang, L. Wang, C. Liu, On the design evolution of hip implants: A review, Mater. Des. 216 (2022). https://doi.org/10.1016/j.matdes.2022.110552.
E. Celik, F. Alemdar, M. Bati, M.F. Dasdemir, O.A. Buyukbayraktar, K.N. Chethan, M. Kara, S. Mihcin, Mechanical Investigation for the Use of Polylactic Acid in Total Hip Arthroplasty Using FEM Analysis, Lect. Notes Networks Syst. 328 LNNS (2022) 17–23.
M.A. Hussein, A.S. Mohammed, N. Al-Aqeeli, Wear characteristics of metallic biomaterials: A review, Materials (Basel). 8 (2015) 2749–2768. https://doi.org/10.3390/ma8052749.
S. Mischler, A.I. Muñoz, Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal, Wear 297 (2013) 1081–1094. https://doi.org/10.1016/j.wear.2012.11.061.
O.S. Paper, A. Engineering, Computational analysis of hip prosthesis: impact of shape and material on mechanical performance 1, (2025).
T. Smoljanic, S. Sedmak, A. Milovanovic, L. Milovic, Numerical simulation of fatigue crack growth in Ti-Al6-V4 hip implants under different exploitation conditions, Procedia Struct. Integr. 48 (2023) 215–221. https://doi.org/10.1016/j.prostr.2023.07.151.
C.Y. Hu, T.R. Yoon, Recent updates for biomaterials used in total hip arthroplasty, Biomater. Res. 22 (2018) 1–12. https://doi.org/10.1186/s40824-018-0144-8.
J.V. Corda, K.N. Chethan, B. Satish Shenoy, S. Shetty, N. Shyamasunder Bhat, M. Zuber, Fatigue Life Evaluation of Different Hip Implant Designs Using Finite Element Analysis, J. Appl. Eng. Sci. 21 (2023) 896–907. https://doi.org/10.5937/jaes0-44094.
J.V. Corda, C. K N, S. Bhat N, S. Shetty, S. Shenoy B, M. Zuber, Finite element analysis of elliptical shaped stem profile of hip prosthesis using dynamic loading conditions, Biomed. Phys. & Eng. Express 9 (2023) 65028. https://doi.org/10.1088/2057-1976/acfe14.
M. Wilkinson, S. Dawson-bowling, A. Goldberg, A. Porteous, A. Watts, E. Young, V. Mccormack, M. Swanson, A. Blom, 21st National Joint Registry Annual Report, (2024).
DePuy Synthes, CORAILTM Total Hip System – Surgical Technique. Johnson & Johnson Medical Ltd, DePuy Synth. (2022). https://www.depuysynthes.com (accessed November 12, 2024).
N. Nikam, S. Shenoy, L. Keni, S. Shetty, S. Bhat, K.N. Chethan, Computational analysis of hip prosthesis: Impact of shape and material on mechanical performance, J. Appl. Eng. Sci. 23 (2025) 314–321. https://doi.org/10.5937/jaes0-55883.
N. Nikam, S. Shenoy B, C. K N, L.G. Keni, S. Shetty, S. Bhat N, Advancements in Surface Coatings for Enhancing Longevity in Hip Implants: A Review, Prosthesis 7 (2025) 1–28. https://doi.org/10.3390/prosthesis7010021.
A. Sedmak, K. Čolić, Fracture and fatigue behaviour of implants made of Ti alloys, Procedia Struct. Integr. 23 (2019) 45–50. https://doi.org/10.1016/j.prostr.2020.01.061.
A.Z. Senalp, O. Kayabasi, H. Kurtaran, Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis, Mater. Des. 28 (2007) 1577–1583. https://doi.org/10.1016/j.matdes.2006.02.015.
C.A. Buckner, R.M. Lafrenie, J.A. Dénommée, Biomaterials in Total Joint Arthroplasty, Intech 11 (2016) 13.
J. Reginald, M. Kalayarasan, K.N. Chethan, P. Dhanabal, Static, dynamic, and fatigue life investigation of a hip prosthesis for walking gait using finite element analysis, Int. J. Model. Simul. 43 (2023) 797–811. https://doi.org/10.1080/02286203.2023.2212346.
H. Göktaş, E. Subaşi, M. Uzkut, M. Kara, H. Biçici, H. Shirazi, K.N. Chethan, Ş. Mihçin, Optimization of Hip Implant Designs Based on Its Mechanical Behaviour, Lect. Notes Networks Syst. 328 LNNS (2022) 37–43. https://doi.org/10.1007/978-3-030-86297-8_4.
A. Aherwar, A. K Singh, A. Patnaik, Current and future biocompatibility aspects of biomaterials for hip prosthesis, AIMS Bioeng. 3 (2015) 23–43. https://doi.org/10.3934/bioeng.2016.1.23.
Ikhsan, J. Triyono, A.R. Prabowo, J.M. Sohn, Investigation of meshing strategy on mechanical behaviour of hip stem implant design using FEA, Open Eng. 10 (2020) 769–775. https://doi.org/10.1515/eng-2020-0087.
A.T. Alpkaya, S. Mihcin, Sensitivity Analysis of Wear on Metal-On-Metal Bearing Couples via Verification of Numeric and Analytic Methods, Hittite J. Sci. Eng. 11 (2024) 57–67. https://doi.org/10.17350/hjse19030000332.
ASTM, F 2996-20 Standard Practice for Finite Element Analysis ( FEA ) of Non-Modular Metallic Orthopaedic Hip Femoral Stems, ASTM Int. Conshohocken, PA, Www.Astm.Org (2020) 1–11. https://doi.org/10.1520/F2996-13.2.
S. Karimi, F. Haji Aboutalebi, M. Heidari-Rarani, A numerical study on fatigue design of Ti-6Al-4V total hip stem: infinite-life and damage tolerance approaches using XFEMPN-VCCT, Meccanica 58 (2023) 959–980. https://doi.org/10.1007/s11012-023-01661-6.
N. Kladovasilakis, K. Tsongas, D. Tzetzis, Finite Element Analysis of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures, Biomimetics 2020, Vol. 5, Page 44 5 (2020) 44. https://doi.org/10.3390/BIOMIMETICS5030044.
C. K.N., M. Zuber, S. Bhat N., S. Shenoy B., C. R. Kini, Static structural analysis of different stem designs used in total hip arthroplasty using finite element method, Heliyon 5 (2019) e01767. https://doi.org/10.1016/j.heliyon.2019.e01767.
T. Joshi, R. Sharma, V. Kumar Mittal, V. Gupta, Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys, Mater. Today Proc. 43 (2020) 105–111. https://doi.org/10.1016/j.matpr.2020.11.222.
G. Matsoukas, I.Y. Kim, Design optimization of a total hip prosthesis for wear reduction, J. Biomech. Eng. 131 (2009) 1–12. https://doi.org/10.1115/1.3049862.
S. Suñer, J.L. Tipper, N. Emami, Biological effects of wear particles generated in total joint replacements: Trends and future prospects, Tribol. - Mater. Surfaces Interfaces 6 (2012) 39–52. https://doi.org/10.1179/1751584X12Y.05.
O.M. Posada, R.J. Tate, M.H. Grant, Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells, Toxicol. Vitr. 29 (2015) 271–280. https://doi.org/10.1016/j.tiv.2014.11.006.
P.J. Firkins, J.L. Tipper, M.R. Saadatzadeh, E. Ingham, M.H. Stone, R. Farrar, J. Fisher, Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator., Biomed. Mater. Eng. 11 (2001) 143–157. https://doi.org/142.
T. Bitter, I. Khan, T. Marriott, E. Lovelady, N. Verdonschot, D. Janssen, The effects of manufacturing tolerances and assembly force on the volumetric wear at the taper junction in modular total hip arthroplasty, Comput. Methods Biomech. Biomed. Engin. 22 (2019) 1061–1072. https://doi.org/10.1080/10255842.2019.1627524.
C. Simoneau, P. Terriault, B. Jetté, M. Dumas, V. Brailovski, Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing, Mater. Des. 114 (2017) 546–556. https://doi.org/10.1016/j.matdes.2016.10.064.
S. Torabnia, S. Mihcin, I. Lazoglu, Design and manufacturing of a hip joint motion simulator with a novel modular design approach, Int. J. Interact. Des. Manuf. 18 (2024) 401–417. https://doi.org/10.1007/s12008-023-01506-2.
J.G. Bowsher, J.C. Shelton, A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions, Wear 250–251 (2001) 167–179. https://doi.org/10.1016/S0043-1648(01)00619-6.
