Diagnostic significance of hsa_circ_0000146 and hsa_circ_0000072 biomarkers for diabetic kidney disease in patients with type 2 diabetes mellitus
Abstract
Background: Diabetic Kidney Disease (DKD) is a significant challenge in healthcare. However, there are currently no reliable biomarkers for renal impairment diagnosis, prognosis, or staging in DKD patients. CircRNAs and microRNAs have emerged as noninvasive and efficient biomarkers.
Methods: We explored Cannabinoid receptor 1 (CNR1), C reactive protein (CRP), hsa_circ_ 0000146 and 0000072, and hsa-miR-21, and 495 as diagnostic biomarkers in DKD. The serum concentrations of CRP and CNR1 were measured using ELISA. Rt-qPCR was used to evaluate the expression levels of CNR1, circRNAs, and miRNAs in 55 controls, 55 type 2 diabetes mellitus patients, and 55 DKD patients. Their diagnostic value was determined by their ROC curve. KEGG pathway was used to predict the functional mechanism of the circRNA’s target genes.
Results: DKD patients exhibited a significant increase in CRP and CNR1 levels, as well as the expression of miR-21 and 495. The expression levels of circ_0000146 and 0000072 decreased in DKD patients. ROC analysis revealed that circRNAs and miRNAs alone or along with CNR1 and CRP have a significant diagnostic potential. The functional prediction results showed the involvement of hsa_circ_0000146 and 0000072 in various pathways that regulates DKD.
Conclusion: Therefore, the examined circRNAs and miRNAs may represent a novel noninvasive biomarker for diagnosing and staging DKD.
References
2. Krolewski, A.S.; Warram, J.H.; Forsblom, C.; Smiles, A.M.; Thorn, L.; Skupien, J.; Harjutsalo, V.; Stanton, R.; Eckfeldt, J.H.; Inker, L.A.; et al. Serum concentration of cystatin C and risk of end-stage renal disease in diabetes. Diabetes Care 2012, 35, 2311–2316, doi:10.2337/DC11-2220/-/DC1.
3. Dao, M.; François, H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front. Endocrinol. (Lausanne). 2021, 12, 830, doi:10.3389/FENDO.2021.720734/BIBTEX.
4. Barutta, F.; Grimaldi, S.; Gambino, R.; Vemuri, K.; Makriyannis, A.; Annaratone, L.; Di Marzo, V.; Bruno, G.; Gruden, G. Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy. Nephrol. Dial. Transplant 2017, 32, 1655–1665, doi:10.1093/NDT/GFX010.
5. Bilgin, S.; Kurtkulagi, O.; Atak Tel, B.M.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G. Does C-reactive protein to serum albumin ratio correlate with diabetic nephropathy in patients with Type 2 diabetes mellitus? The care time study. Prim. Care Diabetes 2021, 15, 1071–1074, doi:10.1016/J.PCD.2021.08.015.
6. Cheng, Y.; Wang, D.; Wang, F.; Liu, J.; Huang, B.; Baker, M.A.; Yin, J.; Wu, R.; Liu, X.; Regner, K.R.; et al. Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes. J. Am. Soc. Nephrol. 2020, 31, 1539–1554, doi:10.1681/ASN.2019101100/-/DCSUPPLEMENTAL.
7. Chen, H.; Wang, X.; Bai, J.; He, A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol. Lett. 2017, 13, 2021, doi:10.3892/OL.2017.5727.
8. Roy, D.; Modi, A.; Khokhar, M.; Sankanagoudar, S.; Yadav, D.; Sharma, S.; Purohit, P.; Sharma, P. MicroRNA 21 Emerging role in diabetic complications: a critical update. Curr. Diabetes Rev. 2021, 17, 122–135, doi:10.2174/1573399816666200503035035.
9. Hu, W.; Han, Q.; Zhao, L.; Wang, L. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J. Cell. Physiol. 2019, 234, 1469–1476, doi:10.1002/JCP.26959.
10. Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338, doi:10.1038/nature11928.
11. Wen, S.; Li, S.; Li, L.; Fan, Q. circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol. Pharm. Bull. 2020, 43, 558–564, doi:10.1248/BPB.B19-00901.
12. Yamazaki, T.; Mimura, I.; Tanaka, T.; Nangaku, M. Treatment of diabetic kidney disease: Current and future. Diabetes Metab. J. 2021, 45, 11–26.
13. Hussain, S.; Chand Jamali, M.; Habib, A.; Hussain, M.S.; Akhtar, M.; Najmi, A.K. Diabetic kidney disease: An overview of prevalence, risk factors, and biomarkers. Clin. Epidemiol. Glob. Heal. 2021, 9, 2–6, doi:10.1016/J.CEGH.2020.05.016.
14. Dao, M.; François, H. Cannabinoid receptor 1 inhibition in chronic kidney disease: a new therapeutic toolbox. Front. Endocrinol. (Lausanne). 2021, 12, 830, doi:10.3389/FENDO.2021.720734/BIBTEX.
15. Jourdan, T.; Park, J.K.; Varga, Z. V.; Pálóczi, J.; Coffey, N.J.; Rosenberg, A.Z.; Godlewski, G.; Cinar, R.; Mackie, K.; Pacher, P.; et al. Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes. Obes. Metab. 2018, 20, 698–708, doi:10.1111/DOM.13150.
16. Hinden, L.; Udi, S.; Drori, A.; Gammal, A.; Nemirovski, A.; Hadar, R.; Baraghithy, S.; Permyakova, A.; Geron, M.; Cohen, M.; et al. Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J. Am. Soc. Nephrol. 2018, 29, 434–448, doi:10.1681/ASN.2017040371/-/DCSUPPLEMENTAL.
17. Eid, B.G.; Neamatallah, T.; Hanafy, A.; El-Bassossy, H.M.; Binmahfouz, L.; Aldawsari, H.M.; Hasan, A.; El-Aziz, G.A.; Vemuri, K.; Makriyannis, A. Interference with TGFβ1-mediated inflammation and fibrosis underlies reno-protective effects of the CB1 receptor neutral antagonists AM6545 and AM4113 in a rat model of metabolic syndrome. Molecules 2021, 26, doi:10.3390/MOLECULES26040866.
18. Wang, C.; Yatsuya, H.; Tamakoshi, K.; Uemura, M.; Li, Y.; Wada, K.; Yamashita, K.; Kawaguchi, L.; Toyoshima, H.; Aoyama, A. Positive association between high-sensitivity C-reactive protein and incidence of type 2 diabetes mellitus in Japanese workers: 6-year follow-up. Diabetes. Metab. Res. Rev. 2013, 29, 398–405, doi:10.1002/DMRR.2406.
19. Dawood, A.A.; Kamel, M.A.; Omar, T.A.; Ahmed, A.; Agaba, M. Study of serum pentraxin 3 level in patients with diabetic nephropathy. Egypt. J. Intern. Med. 2020 321 2020, 32, 1–9, doi:10.1186/S43162-020-00002-3.
20. Cusi, K.; Maezono, K.; Osman, A.; Pendergrass, M.; Patti, M.E.; Pratipanawatr, T.; DeFronzo, R.A.; Kahn, C.R.; Mandarino, L.J. Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. J. Clin. Invest. 2000, 105, 311, doi:10.1172/JCI7535.
21. Tunduguru, R.; Thurmond, D.C. Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-ing them out. Front. Endocrinol. (Lausanne). 2017, 8, 329.
22. Cheng, X.; Gao, W.; Dang, Y.; Liu, X.; Li, Y.; Peng, X.; Ye, X. Both ERK/MAPK and TGF-Beta/Smad signaling pathways play a role in the kidney fibrosis of diabetic mice accelerated by blood glucose fluctuation. J. Diabetes Res. 2013, 2013, doi:10.1155/2013/463740.
23. Budi, E.H.; Muthusamy, B.P.; Derynck, R. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Sci. Signal. 2015, 8, ra96, doi:10.1126/SCISIGNAL.AAA9432.
24. Wang, H.; Zhang, R.; Wu, X.; Chen, Y.; Ji, W.; Wang, J.; Zhang, Y.; Xia, Y.; Tang, Y.; Yuan, J. The wnt signaling pathway in diabetic nephropathy. Front. Cell Dev. Biol. 2022, 9, 3684.
25. Márquez, E.; Riera, M.; Pascual, J.; Soler, M.J.; Soler, M.J. Renin-angiotensin system within the diabetic podocyte. Am J Physiol Ren. Physiol 2015, 308, 1–10, doi:10.1152/ajprenal.00531.2013.-Diabetic.
26. Ma, J.; Zhang, L.; Hao, J.; Li, N.; Tang, J.; Hao, L. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J. Pharmacol. Sci. 2018, 136, 218–227, doi:10.1016/J.JPHS.2017.12.010.
27. Fouad, M.; Salem, I.; Elhefnawy, K.; Raafat, N.; Faisal, A. MicroRNA-21 as an early marker of nephropathy in patients with type 1 diabetes. Indian J. Nephrol. 2020, 30, 21, doi:10.4103/IJN.IJN_80_19.
28. Zang, J.; Maxwell, A.P.; Simpson, D.A.; McKay, G.J. Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci. Reports 2019 91 2019, 9, 1–10, doi:10.1038/s41598-019-47504-x.
29. Kölling, M.; Kaucsar, T.; Schauerte, C.; Hübner, A.; Dettling, A.; Park, J.K.; Busch, M.; Wulff, X.; Meier, M.; Scherf, K.; et al. Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol. Ther. 2017, 25, 165, doi:10.1016/J.YMTHE.2016.08.001.
30. Kato, M.; Wang, M.; Chen, Z.; Bhatt, K.; Oh, H.J.; Lanting, L.; Deshpande, S.; Jia, Y.; Lai, J.Y.C.; O’Connor, C.L.; et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat. Commun. 2016, 7, doi:10.1038/NCOMMS12864.
31. Zhang, X.; Yang, Y.; Feng, Z. Suppression of microRNA-495 alleviates high-glucose-induced retinal ganglion cell apoptosis by regulating Notch/PTEN/Akt signaling. Biomed. Pharmacother. 2018, 106, 923–929, doi:10.1016/J.BIOPHA.2018.07.018.
32. Mastropasqua, R.; D’Aloisio, R.; Costantini, E.; Porreca, A.; Ferro, G.; Libertini, D.; Reale, M.; Nicola, M. Di; Viggiano, P.; Falconio, G.; et al. Serum microRNA Levels in Diabetes Mellitus. Diagnostics 2021, 11, doi:10.3390/DIAGNOSTICS11020284.
33. Wu, H.; Wu, S.; Zhu, Y.; Ye, M.; Shen, J.; Liu, Y.; Zhang, Y.; Bu, S. Hsa-circRNA-0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index. Clin. Epigenetics 2019, 11, 1–13, doi:10.1186/S13148-019-0610-8/FIGURES/5.
Copyright (c) 2022 Sally A Fahim, Amul Badr, Omayma Elkholy, Mona Said, Mohamed El-Khatib, Dina Sabry, Radwa Gaber
This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.