Spexin Level in Acute Myocardial Infarction in the Emergency Department
Spexin Level in Acute Myocardial Infarction
Abstract
Amaç: Acil servise başvuran Akut Miyokard Enfarktüslü (AMI) hastalarda serum spexin düzeyini belirlemeyi amaçladık.
Yöntemler: Çalışmaya AMI'li [50 ST-segment yükselmeli miyokard enfarktüsü (STEMI) ve 50 ST-segment yükselmeli miyokard enfarktüsü (NSTEMI)] olan toplam 100 hasta ve kalp dışı göğüs ağrısı olan 50 kontrol grubu dahil edildi. Başvuru sırasında ayrıntılı anamnez alındı, fizik muayene yapıldı, 12 derivasyonlu elektrokardiyogram ve venöz kan örnekleri alındı. Speksin seviyeleri, enzim bağlantılı immünosorbent tahlili yoluyla ölçüldü.
Bulgular: Serum spexin düzeyleri AMI grubunda kardiyak olmayan göğüs ağrısı grubuna göre anlamlı derecede düşüktü (p<0.001). STEMI ve NSTEMI hastaları arasında serum spexin seviyelerinde anlamlı fark yoktu (p=0,83). Alıcı çalışma eğrisi analizinde, AMI teşhisi için 532 pg/mL'lik bir optimal cutoff değeri ile %58 duyarlılık, %76 özgüllük, %82.9 pozitif prediktif değer ve %47.5 negatif prediktif değer saptadık.
Sonuç: Bu çalışmada, kalp dışı göğüs ağrısı olan hastalara göre AMI hastalarında serum speksin düzeyleri anlamlı olarak düşük bulundu. Speksin düzeylerindeki azalma, AMI hastalarında tanısal bir belirteç olarak kullanılma potansiyeline sahip olduğunu düşündürmektedir.
References
https://journals.sagepub.com/doi/full/10.1177/2048872619885346
2. Chang AM, Fischman DL, Hollander JE. Evaluation of Chest Pain and Acute Coronary Syndromes. Cardiol Clin 2018; 36(1): 1-12.
https://www.sciencedirect.com/science/article/abs/pii/S0733865117300747?via%3Dihub
3. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021; 144 (22): e368-e454.
https://www.ahajournals.org/doi/full/10.1161/CIR.0000000000001029?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
4. Jeong JH, Seo YH, Ahn JY, Kim KH, Seo JY, Chun KY, et al. Performance of Copeptin for Early Diagnosis of Acute Myocardial Infarction in an Emergency Department Setting. Ann Lab Med 2020; 40:7-14.
https://www.annlabmed.org/journal/view.html?doi=10.3343/alm.2020.40.1.7
5. Mirabeau O, Severini C, Audero E, Gascuel O, Possenti R, Birney E, et al. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 2007; 17: 320-327.
https://genome.cshlp.org/content/17/3/320.long
6. Lv SY, Zhou YC, Zhang XM, Chen WD, Wang YD. Emerging roles of NPQ/spexin in physiology and pathology. Front Pharmacol 2019; 10: 457-464.
https://www.frontiersin.org/articles/10.3389/fphar.2019.00457/full
7. Liu Y, Sun L, Zheng L, Su M, Liu H, Wei Y, et al. Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:25-33.
https://link.springer.com/article/10.1007/s00210-019-01708-0
8. Kołodziejski PA, Pruszyńska-Oszmałek E, Korek E, Sassek M, Szczepankiewicz D, Kaczmarek P, et al. Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol Res 2018; 67: 45-56.
https://www.biomed.cas.cz/physiolres/pdf/67/67_45.pdf
9. Gu L, Ma Y, Gu M, Zhang Y, Yan S, Li N, et al. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides 2015; 71:232-239.
https://www.sciencedirect.com/science/article/pii/S0196978115002144?via%3Dihub
10. Khadir A, Kavalakatt S, Madhu D, Devarajan S, Abubaker J, Al-Mulla F, et al. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci Rep 2020;10:10635.
https://www.nature.com/articles/s41598-020-67624-z?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata_scirep
11. Chen T, Wang F, Chu Z, Sun L, Lv H, Zhou W, et al. Circulating spexin decreased and negatively correlated with systemic insulin sensitivity and pancreatic beta cell function in obese children. Ann Nutr Metab 2019; 74:125–31.
https://www.karger.com/Article/Abstract/496459
12. Kumar S, Mankowski RT, Anton SD, Balagopal B. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int J Obes (Lond) 2021; 45(10): 2169-2178.
https://www.nature.com/articles/s41366-021-00906-2
13. Walewski JL, Lobdell H, Levin N, Schwartz GJ, Vasselli JR, Pomp A, et al. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity. 2014; 22(7):1643-52.
https://onlinelibrary.wiley.com/doi/10.1002/oby.20725
14. Al-Daghri NM, Alenad A, Al-Hazmi H, Amer OE, Hussain SD, Alokail MS. Spexin levels are associated with metabolic syndrome components. Dis Markers 2018:1679690
https://www.hindawi.com/journals/dm/2018/1679690/
15. Karaca A, Bakar-Ates F, Ersoz-Gulcelik N. Decreased Spexin Levels in Patients with
Type 1 and Type 2 Diabetes. Med Princ Pract 2018; 27:549-554.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422114/#:~:text=Results,hormone%20(p%20%3E%200.05).
16. Gambaro SE, Zubiría MG, Giordano AP, Portales AE, Alzamendi A, Rumbo M, et al. Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158700.
https://www.sciencedirect.com/science/article/pii/S1388198120300925?via%3Dihub
17. Behrooz M, Vaghef-Mehrabany E, Ostadrahimi A. Different spexin level in obese vs normal weight children and its relationship with obesity related risk factors. Nutr Metab Cardiovasc Dis 2020; 30:674-682.
https://www.sciencedirect.com/science/article/pii/S0939475319304211
18. Kumar S, Hossain MJ, Javed A, Kullo IJ, Balagopal PB. Relationship of circulating spexin with markers of cardiovascular disease: a pilot study in adolescents with obesity. Pediatr Obes 2018; 13(6): 374–380.
https://onlinelibrary.wiley.com/doi/full/10.1111/ijpo.12249
19. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017; 14(3): 133-144.
https://www.nature.com/articles/nrcardio.2016.185
20. Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954.
https://onlinelibrary.wiley.com/doi/10.1111/jcmm.15180
Copyright (c) 2022 Mehtap Gurger, Yahya Ciftci, Evrim Gul, Mustafa Yilmaz, Selda Telo, Metin Atescelik, Mehmet Cagri Goktekin, Mehmet Ali Kobat
This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.