TWO CO-INHERITED SNPS OF THE TELOMERASE REVERSE TRANSCRIPTASE (TERT) GENE ARE ASSOCIATED WITH IRAQI PATIENTS WITH LUNG CANCER

association of TERT gene with lung cancer

  • Zahraa K. Lawi 1Department of Biology, College of Science, University of Kufa, Najaf, 54001, Iraq 2Department of Biology, Faculty of Science, University of Sfax, PB 261, 3000 SFAX, Tunisia https://orcid.org/0000-0001-8135-7957
  • Ibtissem Ben Amara Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of SFAX, PB 261, 3000 SFAX, Tunisia https://orcid.org/0000-0003-3027-2747
  • Ahmed H. Alkhammas Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil 51001, Iraq https://orcid.org/0000-0002-4625-9881
  • Malek Elerouri Department of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
  • Mohammed Baqur S. Al-Shuhaib Al-Qasim Green University https://orcid.org/0000-0002-6458-2068
Keywords: TERT; polymorphism; NSCLC; rs2736098; rs10069690

Abstract


Background: Telomerase reverse transcriptase (TERT) gene is essential for the survival of the vast majority of malignant tumors. This study was conducted to assess the association between TERT gene and non-small cell lung carcinoma (NSCLC) in Iraq.

Methods: Genomic DNA samples were extracted from a total of 200 samples of blood. Four specific PCR fragments were designed to amplify four high-frequency rs2735940, rs2736098, rs2736100, and rs10069690 SNPs within the TERT gene. Single-strand conformation polymorphism (SSCP) followed by sequencing reactions were used to genotype and validate the amplified fragments respectively.

Results: Individuals with the genotype rs2735940:A/G had a significantly higher risk of developing NSCLC (P=0.0299; OD 2.3158; Cl95% 1.0853 to 4.9414). Individuals with the genotype rs2736098:C/T had also associated with the increased risk of NSCLC (P=0.0363; OD 2.1583; Cl95% 1.0503 to 4.4351). Linkage disequilibrium analysis showed that both SNPs showed a very high level of coinheritance in patients. The LD plot showed that allele T of rs2736098 had collaborated with allele G of rs2735940 to generate TG haplotype in patients. According to our findings, TERT- rs2735940:A/G and TERT- rs2736098:C/T SNPs exhibited significant associations with the increased risk of NSCLC. Both SNPs showed the highest values of co-inheritance in patients. This co-inheritance is mainly represented by allele rs2735940:A and allele rs2736098:C. Both pathogenic T and G alleles have generated TG haplotype that is only available in patients’ samples.

 

Conclusion: This study suggests employing the haplotype TG as a promising biomarker for the early diagnosis of NSCLC. These findings need further validation by large-scale investigation with a larger size of samples in the study population.

References

1.           Jazieh AR, Algwaiz G, Errihani H, Elghissassi I, Mula-Hussain L, Bawazir AA, et al. Lung cancer in the Middle East and North Africa region. J Thorac Oncol. 2019;14(11):1884–91.


2.           Hussain AMA, Lafta RK. Cancer Trends in Iraq 2000–2016. Oman Med J. 2021;36(1):e219.


3.           Wong M, Lao XQ, Ho K-F, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7(1):1–9.


4.           Zhao X, Wang S, Wu J, Li X, Wang X, Gao Z, et al. Association of TERT polymorphisms with clinical outcome of non-small cell lung cancer patients. PLoS One. 2015;10(5):e0129232.


5.           Gao H, Niu Y, Li M, Fang S, Guo L. Identification of DJ‐1 as a contributor to multidrug resistance in human small‐cell lung cancer using proteomic analysis. Int J Exp Pathol. 2017;98(2):67–74.


6.           Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999;354(9173):99–105.


7.           Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, Saigi M, Pajares MJ, Garcia D, et al. A novel epigenetic signature for early diagnosis in lung cancer. Clin Cancer Res. 2016;22(13):3361–71.


8.           Hamann HA, Ver Hoeve ES, Carter-Harris L, Studts JL, Ostroff JS. Multilevel opportunities to address lung cancer stigma across the cancer control continuum. J Thorac Oncol. 2018;13(8):1062–75.


9.           El-Baz A, Gimel’farb G, Falk R, El-Ghar A, Rainey S, Heredia D, et al. Toward early diagnosis of lung cancer. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2009. p. 682–9.


10.         Liao Y, Yin G, Wang X, Zhong P, Fan X, Huang C. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol Lett. 2019;18(4):3723–33.


11.         Zawadzka I, Jeleń A, Pietrzak J, Żebrowska-Nawrocka M, Michalska K, Szmajda-Krygier D, et al. The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy–preliminary report. Sci Rep. 2020;10(1):1–10.


12.         Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3–20.


13.         Dratwa M, Wysoczańska B, Łacina P, Kubik T, Bogunia-Kubik K. TERT—Regulation and Roles in Cancer Formation. Front Immunol. 2020;11:589929.


14.         Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49(3):349–57.


15.         Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018;25(1):1–12.


16.         Dogan F, Forsyth NR. Telomerase regulation: a role for epigenetics. Cancers (Basel). 2021;13(6):1213.


17.         Ferreira MSV, Sørensen MD, Pusch S, Beier D, Bouillon A-S, Kristensen BW, et al. Alternative lengthening of telomeres is the major telomere maintenance mechanism in astrocytoma with isocitrate dehydrogenase 1 mutation. J Neurooncol. 2020;147(1):1–14.


18.         Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. Mutat Res Mutat Res. 2017;771:15–31.


19.         Xu Y, Goldkorn A. Telomere and telomerase therapeutics in cancer. Genes (Basel). 2016;7(6):22.


20.         Autexier C, Lue NF. The structure and function of telomerase reverse transcriptase. Annu Rev Biochem. 2006;75:493–517.


21.         Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science (80- ). 1997;277(5328):955–9.


22.         Colebatch AJ, Dobrovic A, Cooper WA. TERT gene: its function and dysregulation in cancer. J Clin Pathol. 2019;72(4):281–4.


23.         Campa D, Rizzato C, Stolzenberg‐Solomon R, Pacetti P, Vodicka P, Cleary SP, et al. TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int J cancer. 2015;137(9):2175–83.


24.         Stoehr R, Taubert H, Zinnall U, Giedl J, Gaisa NT, Burger M, et al. Frequency of TERT promoter mutations in prostate cancer. Pathobiology. 2015;82(2):53–7.


25.         Bayram S, Ülger Y, Sümbül AT, Kaya BY, Genç A, Rencüzoğullari E, et al. Polymorphisms in human telomerase reverse transcriptase (hTERT) gene and susceptibility to gastric cancer in a Turkish population: Hospital-based case–control study. Gene. 2016;585(1):84–92.


26.         Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–55.


27.         Wu Y, Yan M, Li J, Li J, Chen Z, Chen P, et al. Genetic polymorphisms in TERT are associated with increased risk of esophageal cancer. Oncotarget. 2017;8(6):10523.


28.         Wan S, Liu X, Hua W, Xi M, Zhou Y, Wan Y. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1):1495–504.


29.         Llorca-Cardeñosa MJ, Peña-Chilet M, Mayor M, Gomez-Fernandez C, Casado B, Martin-Gonzalez M, et al. Long telomere length and a TERT-CLPTM1 locus polymorphism association with melanoma risk. Eur J Cancer. 2014;50(18):3168–77.


30.         Zhu CQ, Cutz JC, Liu N, Lau D, Shepherd FA, Squire JA, et al. Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer. Br J Cancer. 2006;94(10):1452–9.


31.         Liu Z, Ma H, Wei S, Li G, Sturgis EM, Wei Q. Telomere Length and TERT Functional Polymorphisms Are Not Associated with Risk of Squamous Cell Carcinoma of the Head and NeckTelomere Length, TERT Genetic Variations, and Head and Neck Cancer Risk. Cancer Epidemiol biomarkers Prev. 2011;20(12):2642–5.


32.         Wu H, Qiao N, Wang Y, Jiang M, Wang S, Wang C, et al. Association between the telomerase reverse transcriptase (TERT) rs2736098 polymorphism and cancer risk: evidence from a case-control study of non-small-cell lung cancer and a meta-analysis. PLoS One. 2013;8(11):e76372.


33.         Yoon K-A, Park JH, Han J, Park S, Lee GK, Han J-Y, et al. A genome-wide association study reveals susceptibility variants for non-small cell lung cancer in the Korean population. Hum Mol Genet. 2010;19(24):4948–54.


34.         Xing Y, Liu F, Li J, Lin J, Zhu G, Li M, et al. Case–Control Study on Impact of the Telomerase Reverse Transcriptase Gene Polymorphism and Additional Single Nucleotide Polymorphism (SNP)–SNP Interaction on Non‐Small Cell Lung Cancers Risk in Chinese Han Population. J Clin Lab Anal. 2016;30(6):1071–7.


35.         Lawi ZK, Al-Shuhaib MBS, Amara I Ben. The rs1801280 SNP is associated with non-small cell lung carcinoma by exhibiting a highly deleterious effect on N-acetyltransferase 2. J Cancer Res Clin Oncol. 2022;1–11.


36.         Lawi ZK, Al-Shuhaib MBS, Amara I Ben, Alkhammas AH. Two missense variants of the epidermal growth factor receptor gene are associated with non small cell lung carcinoma in the subjects from Iraq. Mol Biol Rep. 2022;1–9.


37.         Al-Shuhaib MBS. A minimum requirements method to isolate large quantities of highly purified DNA from one drop of poultry blood. J Genet. 2018;97:e87–e94.


38.         Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(1):134.


39.         Badi MA, Al-Shuhaib MBS, Aljubouri TRS, Al-Thuwaini TM, Dawud HH, Hussein TH, et al. Rapid and optimized protocol for efficient PCR-SSCP genotyping for wide ranges of species. Biologia (Bratisl). 2021;76(8):2413–20.


40.         Hashim HO, Al-Shuhaib MBS. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. J Appl Biotechnol Reports. 2019;6(4):137–44.


41.         Byun SO, Fang Q, Zhou H, Hickford JGH. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal Biochem. 2009;385(1):174–5.


42.         Schoonjans F, Zalata A, Depuydt CE, Comhaire FH. MedCalc: a new computer program for medical statistics. Comput Methods Programs Biomed. 1995;48(3):257–62.


43.         Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.


44.         Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Heal. 2019;85(1).


45.         Alsubaie LM, Alsuwat HS, Almandil NB, AlSulaiman A, AbdulAzeez S, Borgio JF. Risk Y-haplotypes and pathogenic variants of Arab-ancestry boys with autism by an exome-wide association study. Mol Biol Rep. 2020;47(10):7623–32.


46.         Ye G, Tan N, Meng C, Li J, Jing L, Yan M, et al. Genetic variations in TERC and TERT genes are associated with lung cancer risk in a Chinese Han population. Oncotarget. 2017;8(66):110145.


47.         Gao L, Thakur A, Liang Y, Zhang S, Wang T, Chen T, et al. Polymorphisms in the TERT gene are associated with lung cancer risk in the Chinese Han population. Eur J Cancer Prev. 2014;23(6):497–501.


48.         Lan Q, Cawthon R, Gao Y, Hu W, Hosgood III HD, Barone-Adesi F, et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS One. 2013;8(3):e59230.


49.         Wang H-M, Zhang X-Y, Jin B. TERT genetic polymorphism rs2736100 was associated with lung cancer: a meta-analysis based on 14,492 subjects. Genet Test Mol Biomarkers. 2013;17(12):937–41.


50.         Nie W, Zang Y, Chen J, Xiu Q. TERT rs2736100 polymorphism contributes to lung cancer risk: a meta-analysis including 49,869 cases and 73,464 controls. Tumor Biol. 2014;35(6):5569–74.


51.         Bae EY, Lee SY, Kang BK, Lee EJ, Choi YY, KANG H, et al. Replication of results of genome‐wide association studies on lung cancer susceptibility loci in a Korean population. Respirology. 2012;17(4):699–706.


52.         Hosgood III HD, Menashe I, Shen M, Yeager M, Yuenger J, Rajaraman P, et al. Pathway-based evaluation of 380 candidate genes and lung cancer susceptibility suggests the importance of the cell cycle pathway. Carcinogenesis. 2008;29(10):1938–43.


53.         Choi JE, Kang H-G, Jang JS, Choi YY, Kim MJ, Kim JS, et al. Polymorphisms in Telomere Maintenance Genes and Risk of Lung CancerTelomere Maintenance Gene Polymorphisms in Lung Cancer. Cancer Epidemiol biomarkers Prev. 2009;18(10):2773–81.


54.         Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41(2):221–7.


55.         Walsh KM, Gorlov IP, Hansen HM, Wu X, Spitz MR, Zhang H, et al. Fine-mapping of the 5p15. 33, 6p22. 1-p21. 31, and 15q25. 1 Regions Identifies Functional and Histology-Specific Lung Cancer Susceptibility Loci in African-AmericansFine-mapping Lung Cancer Risk Regions in African-Americans. Cancer Epidemiol biomarkers Prev. 2013;22(2):251–60.


56.         Van Dyke AL, Cote ML, Wenzlaff AS, Abrams J, Land S, Iyer P, et al. Chromosome 5p region SNPs are associated with risk of NSCLC among women. J Cancer Epidemiol. 2009;2009.


57.         Morais M, Dias F, Resende T, Nogueira I, Oliveira J, Maurício J, et al. Leukocyte telomere length and hTERT genetic polymorphism rs2735940 influence the renal cell carcinoma clinical outcome. Futur Oncol. 2020;16(18):1245–55.


58.         Zhou M, Jiang B, Xiong M, Zhu X. Association between TERT rs2736098 polymorphisms and cancer risk-a meta-analysis. Front Physiol. 2018;9:377.


59.         Fachiroh J, Sangrajrang S, Johansson M, Renard H, Gaborieau V, Chabrier A, et al. Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand. Cancer Causes Control. 2012;23(12):1995–2002.


60.         Yuan X, Cheng G, Yu J, Zheng S, Sun C, Sun Q, et al. The TERT promoter mutation incidence is modified by germline TERT rs2736098 and rs2736100 polymorphisms in hepatocellular carcinoma. Oncotarget. 2017;8(14):23120.


61.         Wang S, Wu J, Hu L, Ding C, Kan Y, Shen Y, et al. Common genetic variants in TERT contribute to risk of cervical cancer in a Chinese population. Mol Carcinog. 2012;51(S1):E118–22.


62.         Hashemi M, Amininia S, Ebrahimi M, Hashemi SM, Taheri M, Ghavami S. Association between hTERT polymorphisms and the risk of breast cancer in a sample of Southeast Iranian population. BMC Res Notes. 2014;7(1):1–8.


63.         Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(D1):D980–5.


64.         Logette E, Wotawa A, Solier S, Desoche L, Solary E, Corcos L. The human caspase-2 gene: alternative promoters, pre-mRNA splicing and AUG usage direct isoform-specific expression. Oncogene. 2003;22(6):935–46.


65.         Druillennec S, Dorard C, Eychene A. Alternative splicing in oncogenic kinases: from physiological functions to cancer. J Nucleic Acids. 2012;2012.


66.         Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, Czech A, et al. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol. 2017;15(5):e2000779.


67.         Sauna ZE, Kimchi-Sarfaty C, Ambudkar S V, Gottesman MM. Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res. 2007;67(20):9609–12.


68.         Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. Cell. 2009;136(4):719–30.


 


 

Published
2023/06/11
Section
Original paper