Association between lactate-to-albumin ratio and short- and long-term mortality in critically ill patients with ischemic stroke: a retrospective analysis of the MIMIC-IV database

Lactate-to-Albumin Ratio and Mortality in Ischemic Stroke

  • Sisi Qin the Fifth Affiliated Hospital of Sun Yat-Sen University
  • Jijie Xiao The Third Affiliated Hospital of Southern Medical University
  • Shiqi Yuan Jinyang Hospital Affiliated to Guizhou Medical University
  • Huitao Zhang the Fifth Affiliated Hospital of Sun Yat-Sen University
  • Yang Liu the Fifth Affiliated Hospital of Sun Yat-Sen University
  • Ningjun Li the Fifth Affiliated Hospital of Sun Yat-Sen University
  • Songjin He the Fifth Affiliated Hospital of Sun Yat-Sen University
  • Li Kou the Fifth Affiliated Hospital of Sun Yat-Sen University
Keywords: lactate-to-albumin ratio, ischemic stroke, mortality, MIMIC-IV Database

Abstract


Background: Stroke is a major cause of disability and cognitive deficits, with ischemic stroke (IS) being the most prevalent type, especially in critically ill patients in intensive care units (ICUs). The lactate-to-albumin ratio (LAR) has emerged as a potential predictor of disease outcomes, but its association with short- and long-term mortality in critically ill IS patients is unclear.

Methods: This study analyzed data from 894 critically ill IS patients from the MIMIC-IV database, categorized into LAR tertiles. Clinical endpoints included ICU, hospital, and 30- and 90-day all-cause mortality. Survival differences were assessed using Kaplan-Meier analysis. Cox proportional-hazards regression models and restricted cubic spline (RCS) analysis evaluated the association between LAR and mortality outcomes. Subgroup analyses examined the modifying effects of clinical characteristics on LAR’s predictive value.

Results: The ICU, hospital, 30-, and 90-day mortality rates were 15.0%, 22.3%, 28.2%, and 36.1%, respectively. Higher LAR levels were associated with reduced survival times and increased mortality risks in all endpoints. Multivariable Cox models confirmed LAR as an independent predictor of 30- and 90-day mortality. RCS analysis indicated a linear relationship between LAR and ICU mortality (P = 0.109), and a non-linear association with hospital (P = 0.005), 30-day (P < 0.001), and 90-day mortality (P < 0.001). Subgroup analyses highlighted significant interactions for respiratory failure and GCS.

Conclusion: LAR is a robust predictor of short- and long-term mortality in critically ill IS patients, offering clinicians a valuable tool for risk stratification and decision-making.

References

1. Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2022; 49(2).
2. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and Ischemic Stroke. Front Immunol 2022; 13: 828447.
3. Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2022; 42(1): 259-305.
4. Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7(1): 215.
5. McDermott M, Jacobs T, Morgenstern L. Critical care in acute ischemic stroke. Handb Clin Neurol 2017; 140: 153-76.
6. Vincent JL, Quintairos ESA, Couto L, Jr., Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 2016; 20(1): 257.
7. Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis*. Crit Care Med 2014; 42(9): 2118-25.
8. O MT, Menyhárt Á, Frank R, Hantosi D, Farkas E, Bari F. Tissue Acidosis Associated with Ischemic Stroke to Guide Neuroprotective Drug Delivery. Biology (Basel) 2020; 9(12).
9. Pilarczyk M, Krasińska-Czerlunczakiewicz H, Stelmasiak Z. [Evaluation of lactic acid levels in blood of patients with ischemic stroke in the earliest stage of the disease]. Neurol Neurochir Pol 1999; 32 Suppl 6: 109-11.
10. Artigas A, Wernerman J, Arroyo V, Vincent JL, Levy M. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care 2016; 33: 62-70.
11. Goh SL, De Silva RP, Dhital K, Gett RM. Is low serum albumin associated with postoperative complications in patients undergoing oesophagectomy for oesophageal malignancies? Interact Cardiovasc Thorac Surg 2015; 20(1): 107-13.
12. Shevtsova A, Gordiienko I, Tkachenko V, Ushakova G. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis Markers 2021; 2021: 9945424.
13. Arques S. Human serum albumin in cardiovascular diseases. Eur J Intern Med 2018; 52: 8-12.
14. Zhou H, Wang A, Meng X, Lin J, Jiang Y, Jing J, et al. Low serum albumin levels predict poor outcome in patients with acute ischaemic stroke or transient ischaemic attack. Stroke Vasc Neurol 2021; 6(3): 458-66.
15. Dziedzic T, Slowik A, Szczudlik A. Serum albumin level as a predictor of ischemic stroke outcome. Stroke 2004; 35(6): e156-8.
16. Zhang Q, Lei YX, Wang Q, Jin YP, Fu RL, Geng HH, et al. Serum albumin level is associated with the recurrence of acute ischemic stroke. Am J Emerg Med 2016; 34(9): 1812-6.
17. Liu Q, Zheng HL, Wu MM, Wang QZ, Yan SJ, Wang M, et al. Association between lactate-to-albumin ratio and 28-days all-cause mortality in patients with acute pancreatitis: A retrospective analysis of the MIMIC-IV database. Front Immunol 2022; 13: 1076121.
18. Wang R, He M, Qu F, Zhang J, Xu J. Lactate Albumin Ratio Is Associated With Mortality in Patients With Moderate to Severe Traumatic Brain Injury. Front Neurol 2022; 13: 662385.
19. Kabra R, Acharya S, Shukla S, Kumar S, Wanjari A, Mahajan S, et al. Serum Lactate-Albumin Ratio: Soothsayer for Outcome in Sepsis. Cureus 2023; 15(3): e36816.
20. Zhu JL, Liu H, Wang LL, Lu XH, Yin HY, Lyu J, et al. Association of lactate to albumin ratio and bicarbonate with short-term mortality risk in patients with acute myocardial infarction. BMC Cardiovasc Disord 2022; 22(1): 490.
21. Haschemi J, Müller CT, Haurand JM, Oehler D, Spieker M, Polzin A, et al. Lactate to Albumin Ratio for Predicting Clinical Outcomes after In-Hospital Cardiac Arrest. J Clin Med 2023; 12(12).
22. Zhong Y, Sun H, Chen H, Jing W, Chen W, Ma J. Association between lactate/albumin ratio and 28-day all-cause mortality in ischemic stroke patients without reperfusion therapy: a retrospective analysis of the MIMIC-IV database. Front Neurol 2023; 14: 1271391.
23. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data 2023; 10(1): 1.
24. Noghrehchi F, Stoklosa J, Penev S, Warton DI. Selecting the model for multiple imputation of missing data: Just use an IC! Stat Med 2021; 40(10): 2467-97.
25. Zhang GG, Hao JH, Yong Q, Nie QQ, Yuan GQ, Zheng ZQ, et al. Lactate-to-albumin ratio is associated with in-hospital mortality in patients with spontaneous subarachnoid hemorrhage and a nomogram model construction. Front Neurol 2022; 13: 1009253.
26. Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y. Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol 2022; 41(1): 19-29.
27. Fuller BM, Dellinger RP. Lactate as a hemodynamic marker in the critically ill. Curr Opin Crit Care 2012; 18(3): 267-72.
28. Daurat A, Dick M, Louart B, Lefrant JY, Muller L, Roger C. Continuous lactate monitoring in critically ill patients using microdialysis. Anaesth Crit Care Pain Med 2020; 39(4): 513-7.
29. Haas SA, Lange T, Saugel B, Petzoldt M, Fuhrmann V, Metschke M, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med 2016; 42(2): 202-10.
30. Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7(1): 305.
31. Andersson AK, Rönnbäck L, Hansson E. Lactate induces tumour necrosis factor-alpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primary cultures. J Neurochem 2005; 93(5): 1327-33.
32. Mölström S, Nielsen TH, Nordström CH, Forsse A, Möller S, Venö S, et al. Bedside microdialysis for detection of early brain injury after out-of-hospital cardiac arrest. Sci Rep 2021; 11(1): 15871.
33. Theodoraki K, Arkadopoulos N, Fragulidis G, Voros D, Karapanos K, Markatou M, et al. Transhepatic lactate gradient in relation to liver ischemia/reperfusion injury during major hepatectomies. Liver Transpl 2006; 12(12): 1825-31.
34. Marion DW, Puccio A, Wisniewski SR, Kochanek P, Dixon CE, Bullian L, et al. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med 2002; 30(12): 2619-25.
35. Frydland M, Møller JE, Wiberg S, Lindholm MG, Hansen R, Henriques JPS, et al. Lactate is a Prognostic Factor in Patients Admitted With Suspected ST-Elevation Myocardial Infarction. Shock 2019; 51(3): 321-7.
36. Pino RM, Singh J. Appropriate Clinical Use of Lactate Measurements. Anesthesiology 2021; 134(4): 637-44.
37. Gharipour A, Razavi R, Gharipour M, Mukasa D. Lactate/albumin ratio: An early prognostic marker in critically ill patients. Am J Emerg Med 2020; 38(10): 2088-95.
38. Qvisth V, Hagström-Toft E, Enoksson S, Bolinder J. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of -adrenoreceptor subtypes. J Clin Endocrinol Metab 2008; 93(1): 240-6.
39. Orbegozo Cortés D, Rayo Bonor A, Vincent JL. Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth 2014; 112(6): 968-81.
40. Dezman ZD, Comer AC, Narayan M, Scalea TM, Hirshon JM, Smith GS. Alcohol consumption decreases lactate clearance in acutely injured patients. Injury 2016; 47(9): 1908-12.
41. Chen CB, Hammo B, Barry J, Radhakrishnan K. Overview of Albumin Physiology and its Role in Pediatric Diseases. Curr Gastroenterol Rep 2021; 23(8): 11.
42. Sethi PK, White CA, Cummings BS, Hines RN, Muralidhara S, Bruckner JV. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res 2016; 79(3): 409-15.
43. Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus 2013; 11 Suppl 4(Suppl 4): s18-25.
44. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology 2005; 41(6): 1211-9.
45. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth 2000; 85(4): 599-610.
46. Belinskaia DA, Voronina PA, Shmurak VI, Jenkins RO, Goncharov NV. Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22(19).
47. Conner BJ. Treating Hypoalbuminemia. Vet Clin North Am Small Anim Pract 2017; 47(2): 451-9.
48. Erstad BL. Serum Albumin Levels: Who Needs Them? Ann Pharmacother 2021; 55(6): 798-804.
49. Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med 2016; 9: 229-55.
Published
2025/02/06
Section
Original paper