Redoks disbalans u neutrofilima u akutnom koronarnom sindromu

  • Ilija M Dragojević Univerzitet u Prištini, Medicinski fakultet, Institut za Biohemiju
  • Dijana Mirić 1Medicinski fakultet, Univerzitet u Prištini- Kosovska Mitrovica, Kosovska Mitrovica, Republika Srbija
  • Bojana Kisić Medicinski fakultet, Univerzitet u Prištini- Kosovska Mitrovica, Kosovska Mitrovica, Republika Srbija
  • Dragana Puhalo Sladoje Medicinski fakultet u Foči, Univerzitet u Istočnom Sarajevu, Republika Srpska, BiH
  • Ljiljana Popović Medicinski fakultet, Univerzitet u Prištini- Kosovska Mitrovica, Kosovska Mitrovica, Republika Srbija
  • Dragiša Rašić Medicinski fakultet, Univerzitet u Prištini- Kosovska Mitrovica, Kosovska Mitrovica, Republika Srbija
Ključne reči: akutni koronarni sindrom , neutrofili, oksidativni stres

Sažetak


Kratak sadržaj

Uvod: Oksidativni stres ima ključnu ulogu u patogenezi akutnog koronarnog sindroma (AKS), a neutrofili doprinose oštećenju krvnih sudova preko produkcije reaktivnih kiseoničnih radikala i oksidanasa zavisnih od mijeloperoksidaze (MPO). Cilj istraživanja je bio da se  ispitaju promene markera oksidativnog stresa i aktivnosti antioksidativnih enzima u neutrofilima pacijenata sa AKS u poređenju sa kontrolnim subjektima.

Metod: Neutrofili su izolovani iz krvi 77 pacijenata sa AKS i 33 kontrolna subjekta. Oksidativni stres je procenjen merenjem konjugovanih diena, hidroperoksida i hloramina. Antioksidativni status je ocenjen određivanjem nivoa neproteinskih i ukupnih tiolnih grupa, kao i aktivnosti superoksid dismutaze (SOD), katalaze, glutation peroksidaze (GPx-1) i glutation reduktaze (GR). Takođe su određivane peroksidazna i hlorinišuća aktivnost MPO.

Rezultati: U grupi pacijenata sa AKS zabeležene su značajno više koncentracije konjugovanih diena (p < 0,005), hloramina (p < 0,005), tiolnih grupa (p < 0,05), aktivnosti SOD (p = 0,05) i hlorinišuće aktivnosti MPO (p < 0,05). Nisu nađene značajne razlike u aktivnostima katalaze, GPx-1, GR i peroksidazne aktivnosti MPO. Značajne korelacije uočene su između markera lipidne peroksidacije i antioksidativnih parametara, naročito SOD i MPO hlorinišuće aktivnosti. Višestruka regresiona analiza identifikovala je SOD i hloramine kao nezavisne prediktore lipidne peroksidacije.

Zaključak: Neutrofili pacijenata sa AKS pokazuju izražen redoks disbalans, karakterisan pojačanom lipidnom peroksidacijom, povećanim sadržajem tiola i povećanom hlorinišućom aktivnošću MPO. Ovi nalazi ukazuju na potencijal redoks parametara neutrofila kao biomarkera i terapijskih meta u AKS.

Ključne reči: akutni koronarni sindrom , neutrofili, oksidativni stress

Reference

Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22(6):1065–1075.

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685–1695.

Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342(12):836-843.

Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res 2012;110(6):875–888.

Quillard T, Araujo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015;36(22):1394-404.

Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 2005;25(6):1102–1111.

Lubrano V, Pingitore A, Traghella I, Storti S, Parri S, Berti S, et al. Emerging biomarkers of oxidative stress in acute and stable coronary artery disease: levels and determinants. Antioxidants 2019;8(5):115-126.

Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001;286(17):2136-2142.

Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320(6):365-376.

Halliwell B, Gutteridge JMC. Antioxidant defences synthesized in vivo. In: Free Radicals in Biology and Medicine. 5th ed. Oxford: Oxford University Press 2015:77-152.

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37(4):277-285.

Peskin AV, Winterbourn CC. Histamine chloramine reactivity with thiol compounds, ascorbate and methionine and with intracellular glutathione. Free Rad Biol Med 2003;35(10):1252-1360.

Romero FJ, Bosch-Morell F, Romero MJ, Jareño EJ, Romero B, Marín N, et al. Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 1998;106:Suppl 5:1229-1234.

Asakawa T, Matsushita S. Thiobarbituric acid test for detecting lipid peroxides. Lipids 1979;14(4):401–406.

Bertrand ME, Simoons ML, Fox KA, Wallentin LC, Hamm CW, McFadden E, et al. Task Force on the Management of Acute Coronary Syndromes of the European Society of Cardiology. Management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2002; 23 (23): 1809-1840.

Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, et al. Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2003;24(1):28-66.

Hamm CW, Braunwald E. A classification of unstable angina revisited. Circulation 2000;102(1):118-122.

Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur Heart J 2000;21(18):1502-1513.

Boyum A. Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest Suppl 1968;97:7.

English D, Andersen BR. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods 1974;5(3):249-255.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurment with the Folin phenol reagent. J Biol Chem 1951;193(1):265-275.

Recknagel RO, Glende EA jr. Spectrophotometric detection of lipid conjugated dienes. Methods Enzymol 1984; 105: 331-337.

Tappel AL. Measurement of and protection from in vivo lipid peroxidation. In: Pryor WA, editor. Free radicals in Biology. New York: Academic Press 1980:1-47.

Babizhayev MA, Costa BE. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens. Biochim Biophys Acta 1994;1225(3):326-337.

Metcalf JA, Gallin JI, Nauseef WM, Root RK. Myeloperoxidase functional assays. In: Metcalf JA, editor. Laboratory Manual of Neutrophil Function. New York: Raven Press 1986:150-151.

Dypbukt JM, Bishop C, Brooks WM, Thong B, Eriksson H, Kettle AJ. A sensitive and selective assay for chloramine production by myeloperoxidase. Free Rad Biol Med 2005;39(11):1468-1477.

Dacie SJV, Lewis SM. Estimation of reduced glutathione. In: Dacie SJV, editor. Practical Haematology, 6th ed. London: Churchill Livingstone 1984:168-170.

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 1968;25(1):192-205.

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247(10):3170-3175.

Chiu DT, Stults FH, Tappel AL. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta 1976;445(3):558-566.

Koroliuk MA, Ivanova LI, Maĭorova IG, Tokarev VE. Metod opredeleniia aktivnosti katalazy (A method of determining catalase activity). Lab Delo 1988;(1):16-9. Russian.

Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991;196(2-3):143-151.

Glatzle D, Vuilleumier JP, Weber F, Decker K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 1974;30(6):665-667.

Majkić Singh N. Klinička enzimologija (Clinical enzymology). Beograd:AID Praktikum 1993. Serbian.

Bukowska B. 2,4,5-T and 2,4,5-TCP induce oxidative damage in human erythrocytes: the role of glutathione. Cell Biol Int 2004;28(7):557-563.

Buffon A, Biasucci LM, Liuzzo G, D'Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med 2002;347(1):5-12.

Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, et al. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. FASEB J 2012;26(4):1442-1451.

Yu Q, Lee CF, Wang W, Karamanlidis G, Kuroda J, Matsushima S, et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 2014;3(1):e000555.

Garlichs CD, Eskafi S, Cicha I, Schmeisser A, Walzog B, Raaz D, et al. Delay of neutrophil apoptosis in acute coronary syndromes. J Leukoc Biol 2004;75(5):828-835.

Wright A, Bubb WA, Hawkins CL, Davies MJ. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol 2002;76(1):35-46.

Marquez LA, Dunford HB, Van Wart H. Kinetic studies on the reaction of compound II of myeloperoxidase with ascorbic acid. Role of ascorbic acid in myeloperoxidase function. J Biol Chem 1990;265(10):5666-5670.

Objavljeno
2025/09/01
Broj časopisa
Rubrika
Original paper