Cardiac function, heart failure indicators and inflammatory factors in continuous mild hypothermic hemodialysis patients after valvular heart disease surgery
Cardiac function, heart failure indicators and inflammatory factors in continuous mild hypothermic hemodialysis
Abstract
Objective: To compare the effects of continuous hemodialysis at normal temperature and mild hypothermia in the treatment of cardiogenic shock after valvular heart disease surgery and its influences on patients' cardiac function, heart failure indicators and inflammatory factors.
Methods: After surgery for valvular heart disease, 180 patients with cardiogenic shock were brought to our hospital between January 2023 and December 2024. Patients in the control group received continuous hemodialysis treatment at normal temperature, whereas patients in the observation group received continuous hemodialysis treatment at mild hypothermia. The postoperative drainage volume, blood purification time, ventilator assistance time, ICU stay time, and occurrence of death, arrhythmia and infection were compared between the two groups. Cardiac function indicators, laboratory indicators of heart failure, serum creatinine (Cr), and inflammatory factor data were compared between the two patient groups prior to and following therapy.
Results: Postoperative drainage volume, ventilator assistance time, intensive care unit (ICU) stay, blood purification time and mortality rate (P<0.05) were analyzed. The laboratory measurements of BNP, hs-CRP, and CR-related heart failure did not differ prior to treatment (P>0.05). BNP, hs-CRP, and CR-related heart failure were laboratory markers that were reduced in both groups after treatment; the levels in the observation group were lower than those in the control group (P<0.05). Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 (IL-1) were present at the same pretreatment levels in both groups (P>0.05). The levels decreased after treatment and were lower in the observation group than in the control group (P<0.05).
Conclusion: For patients with cardiogenic shock after valvular heart disease surgery, mild hypothermia hemodialysis treatment can further reduce the postoperative drainage volume and hemopurification time, promote early recovery, and reduce the mortality rate. Moreover, mild hypothermia hemodialysis treatment can further improve the cardiac function of patients and alleviate heart failure. The levels of inflammatory factors in the patient's body should be reduced.
References
2.Thiene G, Rizzo S, Basso C. Bicuspid aortic valve: The most frequent and not so benign congenital heart disease. Cardiovasc Pathol. 2024 May-Jun;70:107604. doi: 10.1016/j.carpath.2024.107604. Epub 2024 Jan 20. PMID: 38253300.
3.Xue W, Xinlan Z, Xiaoyan Z. Effectiveness of early cardiac rehabilitation in patients with heart valve surgery: a randomized, controlled trial. J Int Med Res. 2022 Jul;50(7):3000605211044320. doi: 10.1177/03000605211044320. PMID: 35899970; PMCID: PMC9340911.
4.Kaplan JL, Visser LC, Gunther-Harrington CT, Ontiveros ES, Wittenburg LA, Palm CA, Stern JA. Effect of standard-dose and high-dose pimobendan on select indices of renal and cardiac function in dogs with American College of Veterinary Internal Medicine stage B2 myxomatous mitral valve disease. J Vet Intern Med. 2022 Nov;36(6):1892-1899. doi: 10.1111/jvim.16537. Epub 2022 Sep 13. PMID: 36098206; PMCID: PMC9708424.
5.Tsai S, Li Y, Wu X. Serum magnesium level and cardiac valve calcification in hemodialysis patients. BMC Cardiovasc Disord. 2023 Dec 13;23(1):610. doi: 10.1186/s12872-023-03662-5. PMID: 38093238; PMCID: PMC10717005.
6.Fu M, Song J. Single-cell RNA sequencing reveals the diversity and biology of valve cells in cardiac valve disease. J Cardiol. 2023 Jan;81(1):49-56. doi: 10.1016/j.jjcc.2022.03.012. Epub 2022 Apr 9. PMID: 35414472.
7.Cai Z, Zhu M, Xu L, Wang Y, Xu Y, Yim WY, Cao H, Guo R, Qiu X, He X, Shi J, Qiao W, Dong N. Directed Differentiation of Human Induced Pluripotent Stem Cells to Heart Valve Cells. Circulation. 2024 Apr 30;149(18):1435-1456. doi: 10.1161/CIRCULATIONAHA.123.065143. Epub 2024 Feb 15. PMID: 38357822; PMCID: PMC11062615.
8.Yu M, Tcheandjieu C, Georges A, Xiao K, Tejeda H, Dina C, Le Tourneau T, Fiterau M, Judy R, Tsao NL, Amgalan D, Munger CJ, Engreitz JM, Damrauer SM, Bouatia-Naji N, Priest JR. Computational estimates of annular diameter reveal genetic determinants of mitral valve function and disease. JCI Insight. 2022 Feb 8;7(3):e146580. doi: 10.1172/jci.insight.146580. PMID: 35132965; PMCID: PMC8855800.
9.Laflamme DP. Key nutrients important in the management of canine myxomatous mitral valve disease and heart failure. J Am Vet Med Assoc. 2022 Oct 8;260(S3):S61-S70. doi: 10.2460/javma.22.07.0319. PMID: 36191141.
10.Hafiane A, Pisaturo A, Favari E, Bortnick AE. Atherosclerosis, calcific aortic valve disease and mitral annular calcification: same or different? Int J Cardiol. 2025 Feb 1;420:132741. doi: 10.1016/j.ijcard.2024.132741. Epub 2024 Nov 16. PMID: 39557087.
11.Lancaster TS, Romano JC, Si MS, Ohye RG. Aortic valve repair using geometric ring annuloplasty in pediatric and congenital heart disease patients. J Thorac Cardiovasc Surg. 2023 Aug;166(2):294-303. doi: 10.1016/j.jtcvs.2022.10.017. Epub 2022 Oct 19. PMID: 36404145.
12.D'Ascenzi F, Cavigli L, Cameli M, Claessen G, van Craenenbroeck EM, Cavarretta E, D'Andrea A, Sanz De la Garza M, Eijsvogels TMH, van Kimmenade RRJ, Galian-Gay L, Halle M, Mandoli GE, Mantegazza V, Moreo A, Schreurs B, Stefani L, Zamorano JL, Pelliccia A, Papadakis M. Sport PRactice and its Effects on aortic size and valve function in bicuspid Aortic valve Disease: a cross-sectional report from the SPREAD study. Br J Sports Med. 2024 Dec 2;58(23):1419-1425. doi: 10.1136/bjsports-2023-107772. PMID: 39153748; PMCID: PMC11672041.
13.Delwarde C, Toquet C, Boureau AS, Le Ruz R, Le Scouarnec S, Mérot J, Kyndt F, Bernstein D, Bernstein JA, Aalberts JJJ, Le Marec H, Schott JJ, Roussel JC, Le Tourneau T, Capoulade R. Filamin A heart valve disease as a genetic cause of inherited bicuspid and tricuspid aortic valve disease. Heart. 2024 Apr 15;110(9):666-674. doi: 10.1136/heartjnl-2023-323491. PMID: 38148157.
14.Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021 Apr 20;13(8):10833-10852. doi: 10.18632/aging.202860. Epub 2021 Apr 20. PMID: 33879634; PMCID: PMC8109137.
15.Lansac E, Veen KM, Joseph A, Blancarte Jaber P, Sossi F, Das-Gupta Z, Aktaa S, Sádaba JR, Thourani VH, Dahle G, Szeto WY, Bakaeen F, Aikawa E, Schoen FJ, Girdauskas E, Almeida A, Zuckermann A, Meuris B, Stott J, Kluin J, Meel R, Woan W, Colgan D, Jneid H, Balkhy H, Szerlip M, Preventza O, Shah P, Rigolin VH, Medica S, Holmes P, Sitges M, Pibarot P, Donal E, Hahn RT, Takkenberg JJM. The First International Consortium for Health Outcomes Measurement (ICHOM) Standard Dataset for Reporting Outcomes in Heart Valve Disease: Moving from Device- to Patient-Centered Outcomes: Developed by a multisociety taskforce coordinated by the Heart Valve Society (HVS) including the American Heart Association (AHA), the American College of Cardiology (ACC), the European Association for Cardio-Thoracic Surgery (EACTS), the European Society of Cardiology (ESC), the Society of Thoracic Surgeons (STS), the Australian & New Zealand Society of Cardiac & Thoracic Surgeons (ANZSCTS), the International Society for Applied Cardiovascular Biology (ISACB), the International Society for Minimally Invasive Cardiothoracic Surgery (ISMICS), the South African Heart Association (SHA), Heart Valve Voice, and the Global Heart Hub. Circ Cardiovasc Qual Outcomes. 2025 Mar;18(3):e000128. doi: 10.1161/HCQ.0000000000000128. Epub 2025 Feb 17. PMID: 39957624; PMCID: PMC11917533.
16.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
17.Egbe AC, Salama AA, Miranda WR, Karnakoti S, Anderson JH, Jain CC, Burchill LJ, Connolly HM. Right Heart Reverse Remodeling and Prosthetic Valve Function After Transcatheter vs Surgical Pulmonary Valve Replacement. JACC Cardiovasc Interv. 2024 Jan 22;17(2):248-258. doi: 10.1016/j.jcin.2023.11.030. PMID: 38267139.
18.Al Zaidi M, Nickenig G, Zimmer S. Emergency transcatheter aortic valve replacement in a 35-year-old patient with unicuspid aortic valve disease and cardiogenic shock. Eur Heart J. 2023 Sep 1;44(33):3200. doi: 10.1093/eurheartj/ehad465. PMID: 37529877.
19.Lama von Buchwald C, Gonzalez PE, O'Neill B, Wang DD, Frisoli T, O'Neill WW, Villablanca PA. Percutaneous Retrieval of an Aortic Valve Vegetation Causing Severe Regurgitation and Cardiogenic Shock. JACC Cardiovasc Interv. 2023 May 22;16(10):1301-1303. doi: 10.1016/j.jcin.2023.03.027. Epub 2023 May 3. PMID: 37140503.
20.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
21.Parlow S, Di Santo P, Jung RG, Fam N, Czarnecki A, Horlick E, Abdel-Razek O, Chan V, Hynes M, Nicholson D, Dryden A, Fernando SM, Wells GA, Bernick J, Labinaz M, Mathew R, Simard T, Hibbert B. Transcatheter mitral valve repair for inotrope dependent cardiogenic shock - Design and rationale of the CAPITAL MINOS trial. Am Heart J. 2022 Dec;254:81-87. doi: 10.1016/j.ahj.2022.08.008. Epub 2022 Aug 21. PMID: 36002047.
22.Golzarian H, Thiel A, Hempfling G, Otto M, Otto T, Shappell E, Racer L, Martz D, Recker-Herman CM, Laird A, Cole WC, Sirak J, Patel SM. Severe aortic insufficiency-induced cardiogenic shock treated with left atrial VA-ECMO and emergent valve-in-valve TAVR. ESC Heart Fail. 2023 Dec;10(6):3718-3724. doi: 10.1002/ehf2.14561. Epub 2023 Oct 27. PMID: 37890858; PMCID: PMC10682863.
23.Piriou PG, Manigold T, Letocart V, Le Ruz R, Schurtz G, Vincent F, Van Belle É, Guérin P, Plessis J. Outcomes of emergency transcatheter aortic valve replacement in patients with cardiogenic shock: A multicenter retrospective study. Catheter Cardiovasc Interv. 2022 Jun;99(7):2117-2124. doi: 10.1002/ccd.30194. Epub 2022 Apr 8. PMID: 35395142.
24.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
25.Tan T, Zhu E, Cui H, Lai Y. Managing Cardiogenic Shock With Concurrent Transcatheter Aortic Valve Replacement and Percutaneous Coronary Intervention. JACC Case Rep. 2025 May 14;30(10):103918. doi: 10.1016/j.jaccas.2025.103918. Epub 2025 Apr 19. PMID: 40252066; PMCID: PMC12144981.
26.Ya'Qoub L, Beygui RE, Shunk K, Agrawal H. Thrombectomy using AlphaVac for left atrial thrombus causing mechanical mitral valve obstruction and cardiogenic shock. J Invasive Cardiol. 2023 Nov;35(11). doi: 10.25270/jic/23.00154. PMID: 37992325.
27.Lu ZN, Chen Q, Lam YY, Song G. Imaging for Transcatheter Mitral Valve Edge-to-Edge Repair for an Unusual Cause of Cardiogenic Shock. Circ Cardiovasc Imaging. 2023 Apr;16(4):e014588. doi: 10.1161/CIRCIMAGING.122.014588. Epub 2022 Dec 2. PMID: 36458532.
28.Reed A, Bajwa S, Schuh S, Mikhael M. Incidental Perforation of Aortic Valve Leaflet Found on Presentation of Cardiogenic Shock. Cureus. 2023 May 25;15(5):e39476. doi: 10.7759/cureus.39476. PMID: 37362500; PMCID: PMC10290443.
29.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
30.Akinmolayemi O, McCreery C, Prandi FR, Samtani R, Mehta A, Suleman U, Kapoor AB, Kayani J, Gidwani UK, Lerakis S, Dangas GD. Severe functional mitral regurgitation and cardiogenic shock after transcatheter aortic valve replacement. J Invasive Cardiol. 2024 Sep;36(9). doi: 10.25270/jic/24.00119. PMID: 38787923.
Copyright (c) 2025 Yun Mao, Li Zhu, Huilan Chen, Danxin Li, Chikai Yuan, Renqiang Wang, Jian Liu

This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
