MOLECULAR MECHANISMS OF METFORMIN ACTION: FROM METABOLIC EFFECTS TO LIFESPAN EXTENSION AND HEALTHSPAN PROMOTION

Metformin’s Molecular Effects on Aging and Healthspan

  • Slavica Vujovic Prirodno-matematicki fakultet, Univerzitet Crne Gore
  • Svetlana Perovic 1- Faculty of Natural Science and Mathematics, University of Montenegro, Montenegro 2- Faculty of Medicine, University of Montenegro , Montenegro
  • Milorad Vlaovic 1- Faculty of Natural Science and Mathematics, University of Montenegro, Montenegro
  • Stasa Scepanovic 3- Clinic of Gynecology and Opstetrics, University Clinic Center of Serbia, Faculty of Medicine, University of Belgrade, Serbia
  • Aleksandra Filipovic 4- Resident of Internal Medicine, General Hospital Celje, Slovenia 5- Private Health Center Polyclinic Filipovic, Montenegro
Keywords: Anti-aging; AMPK; Longevity; Metformin; Mitochondria; mTOR

Abstract


Background :
Metformin, a biguanide primarily used for the treatment of type 2 diabetes mellitus, has attracted significant attention for its potential anti-aging effects. As aging becomes the primary risk factor for chronic diseases, interventions targeting fundamental aging processes are gaining traction in biomedical research.

Mechanisms of Action:
Accumulating evidence suggests that metformin exerts geroprotective effects through multiple interconnected pathways. These include activation of AMP-activated protein kinase (AMPK), inhibition of the mechanistic target of rapamycin (mTOR), attenuation of oxidative stress, modulation of mitochondrial biogenesis, and reduction of low-grade systemic inflammation. Together, these actions address key hallmarks of aging such as cellular senescence, dysregulated nutrient sensing, and altered proteostasis.

Preclinical and Clinical Evidence:
Animal studies have consistently shown that metformin extends both lifespan and healthspan. In humans, retrospective epidemiological data indicate reduced incidence of cancer, cardiovascular disease, and cognitive decline among metformin users. The TAME (Targeting Aging with Metformin) trial represents the first large-scale attempt to formally assess aging-related outcomes in a non-diabetic population.

Challenges and Perspectives:
Despite promising data, uncertainties remain regarding optimal dosing, long-term safety, and applicability in healthy aging populations. Furthermore, individual variability in response to metformin suggests the need for precision medicine approaches.

Conclusion:
Metformin stands at the intersection of metabolic regulation and aging biology. While not a panacea, its favorable safety profile and multi-targeted actions make it a leading candidate for repurposing as an anti-aging therapy. Continued clinical validation is essential to translate these insights into practice.

 

References

1. Valencia MW, Palacio A, Tamariz L, Florez HM. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia. 2017 Sep;60(9):1630–1638.
2. Leser JM, Harriot A, Buck HV, Ward CW, Stains JP. Aging, Osteo-Sarcopenia, and musculoskeletal Mechano-Transduction. Front Rehabil Sci. 2021;2. https://doi.org/10.3389/fresc.2021.7828483.
3. Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8(1). https://doi.org/10.1038/s41392-023-01502-8
4. Kang C. Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases. Mol Cells. 2019;42(12):821–827.
5. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and Age‐Related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127
6. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms regulating longevity and aging. Cell. 2016 Aug 11;166(4):822–839.
7. Harman D. Aging: Overview. Department of Medicine, University of Nebraska College of Medicine, 68198-4635.
8. Lopes-Paciencia S, Saint-Germain E, Rowell M, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15–22. https://doi.org/10.1016/j.cyto.2019.01.013
9. World Health Organization. Ageing and health [Internet]. Geneva: WHO; 2024 [cited 2025 Aug 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
10. Tang B, Li Z, Hu S, Xiong J. Economic implications of health care burden for elderly population. INQUIRY J Health Care Organ Provision Financ. 2022;59. https://doi.org/10.1177/00469580221121511
11. Asejeje FO, Ogunro OB. Deciphering the mechanisms, biochemistry, physiology, and social habits in the process of aging. Arch Gerontol Geriatr Plus. 2023;1(1):100003. https://doi.org/10.1016/j.aggp.2023.100003
12. Palmel AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia. 2019;62:1835–1841.
13. Pontzer H, Yamada Y, Sagayama H, et al. Daily energy expenditure through the human life course. Science. 2021;373(6556):808–812. https://doi.org/10.1126/science.abe5017
14. Palmer AK, Jensen MD. Metabolic changes in aging humans: current evidence and therapeutic strategies. J Clin Invest. 2022;132(16). https://doi.org/10.1172/jci158451
15. Ma S, Gladyshev VN. Molecular signatures of longevity: insights from cross-species comparative studies. Semin Cell Dev Biol. 2017;70:190–203.
16. Fraser HC, Kuan V, Johnen R, et al. Biological mechanisms of aging predict age‐related disease co‐occurrence in patients. Aging Cell. 2022;21(4). https://doi.org/10.1111/acel.13524
17. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. https://doi.org/10.1016/j.cell.2022.11.001
18. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007;292:R18–R36.
19. De Almeida AJP, De Oliveira JCPL, Da Silva Pontes LV, et al. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxid Med Cell Longev. 2022;2022:1–23. https://doi.org/10.1155/2022/1225578
20. Graham C, Stefanatos R, Yek AEH, et al. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience. 2022;44(4):1961–1974. https://doi.org/10.1007/s11357-022-00555-x
21. Vitale M, Sanz A, Scialò F. Mitochondrial redox signaling: a key player in aging and disease. Aging. 2023. https://doi.org/10.18632/aging.204659
22. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants. 2023;12(3):651. https://doi.org/10.3390/antiox12030651
23. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
24. Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev. 2016;2016:5698931. https://doi.org/10.1155/2016/5698931
25. Ramos-Tovar E, Muriel P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants. 2020;9(12):1279. https://doi.org/10.3390/antiox9121279
26. Reznick RM, Zong H, Li J, et al. Aging-Associated reductions in AMP-Activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5(2):151–156. https://doi.org/10.1016/j.cmet.2007.01.008
27. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2011;11(2):230–241. https://doi.org/10.1016/j.arr.2011.12.005
28. Han X, Tai H, Wang H, et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell. 2016;15:416–427.
29. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48:e245.
30. Gelino S, Hansen M. Autophagy - An Emerging Anti-Aging Mechanism. J Clin Exp Pathol. 2012 Jul 12;Suppl 4:006.
31. Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2015; 15(2): 196–207.
32. Link W. Introduction to FOXO Biology. Methods Mol Biol 2018; 1–9.
33. Milman S, Huffman DM, Barzilai N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab 2016; 23(6): 980–989.
34. Zhang WB, Ye K, Barzilai N, Milman S. The antagonistic pleiotropy of insulin‐like growth factor 1. Aging Cell 2021; 20(9).
35. Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, et al. Low insulin‐like growth factor‐1 level predicts survival in humans with exceptional longevity. Aging Cell 2014; 13(4): 769–771.
36. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging 2017; 9(6): 1477–1536.
37. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, et al. mTOR as a central regulator of lifespan and aging. F1000Res 2019; 8: 998.
38. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria R, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev 2019; 99: 1047–1078.
39. Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29(3): 483–497.
40. Moiseeva O, Simard XD, Germain E, Igelmann S, Huot G, Cadar AE, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013; 12: 489–498.
41. Smieszek A, Strek Z, Kornicka K, Grzesiak J, Weiss C, Marycz K. Antioxidant and anti-senescence effect of metformin on mouse olfactory ensheathing cells (mOECs) may be associated with increased brain-derived neurotrophic factor levels—an ex vivo study. Int J Mol Sci 2017; 18(4): 872.
42. Blagosklonny MV. Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12(18): 1821–1835.
43. Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ Aging 2024; 10(1).
44. Fu TE, Zhou Z. Senescent cells as a target for anti-aging interventions: from senolytics to immune therapies. J Transl Intern Med 2025; 13(1): 33–47.
45. Kulkarni AS, Brutsaert EF, Anghel V, Zhang K, Bloomgarden N, Pollak M, et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 2018; 17: e12723.
46. Roberts C, Raabe N, Wiegand L, Shahib AK, Rastegar M. Diverse applications of the anti-diabetic drug metformin in treating human disease. Pharmaceuticals 2024; 17(12): 1601.
47. Romero R, Erez O, Huittemann M, Maymon E, Panaitescu B, Agudelo AC, et al. Metformin, the aspirin of the 21st century: its role in gestational diabetes, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 2017; 217(3): 282–302.
48. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J 2015; 471: 307–322.
49. Fujita Y, Inagaki N. Metformin: new preparations and nonglycemic benefits. Curr Diab Rep 2017; 17(1): 5.
50. Podhorecka M, Ibanez B, Dmoszynska A. Metformin – its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online) 2017; 71: 170–175.
51. Rangel ES, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia 2017; 60(9): 1586–1593.
52. Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Drug Targets 2015; 15: 196–205.
53. Hur KY, Lee MS. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 2015; 6: 600–609.
54. Algire C, Moiseeva O, Simard XD, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res 2012; 5(4): 536–543.
55. Blagosklonny MV. Validation of anti‐aging drugs by treating age‐related diseases. Aging (Albany NY) 2009; 1(3): 281–288.
56. Anisimov VN. Metformin for aging and cancer prevention. Aging (Albany NY) 2010; 2(11): 760–774.
57. Anisimov VN. Metformin and rapamycin are master‐keys for understanding the relationship between cell senescence, aging and cancer. Aging (Albany NY) 2013; 5(5): 337–338.
58. Lee S, Min K. Caloric restriction and its mimetics. BMB Rep 2013; 46(4): 181–187.
59. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab 2016; 23(6): 1060–1065.
60. Quan JIC, Blackwell TK. Metformin: restraining nucleocytoplasmic shuttling to fight cancer and aging. Cell 2016; 167(7): 1670–1671.
61. Sultuybek GK, Soydas T, Yenmis G. NF-κB as the mediator of metformin's effect on ageing and ageing-related diseases. Clin Exp Pharmacol Physiol 2019; 46(5): 413–22.
62. Chen J, Ou Y, Li J, Hu S, Shao LW, Liu Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife 2017; 6: e31268.
63. Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep 2019; 29(6): 1511–23.e5.
64. Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes 2017; 8(12): 398.
65. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757–72.
66. Wrobel MP, Marek B, Kajdaniuk D, et al. Metformin – a new old drug. Endokrynol Pol 2017; 68(4): 482–96.
67. Vancura A, Vancurova I. Metformin induces protein acetylation in cancer cells. Oncotarget 2017; 8: 39939–40.
68. Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci 2018; 39(12): 1064–76.
69. Abdellatif M, Sedej S, Gutierrez DC, Madeo F, Kroemer G. Autophagy in cardiovascular aging. Circ Res 2018; 123: 803–24.
70. Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137: 111286.
71. Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 2020; 32(1): 44–55.e6.
72. Cheng F, Liu Y, Du J, Lin J. Metformin’s mechanisms in attenuating hallmarks of aging and age-related disease. Aging Dis 2022; 13(4): 970.
73. Karise I, Ornellas F, Silva SB, Matsuura C, Sol M, Aquila MB, et al. Liver and metformin: Lessons of a fructose diet in mice. Biochim Open 2017; 4: 19–30.
74. Foretz M, Guigas B, Bertrand L, Polak M, Viollet B. Metformin: From mechanisms of action to therapies. Cell Metab 2014; 20(6): 953–66.
75. Boyle JG, Logan PJ, Jones GC, Small M. AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study. Diabetologia 2011; 54: 1799–809.
76. Cahova M, Palenickova E, Dankova H, Sticova E, Burian M, Drahota Z, et al. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation. Am J Physiol Gastrointest Liver Physiol 2015; 309: G100–11.
77. Rosa LC, Vrenken TE, Homan MB, Faber KN, Moshage H. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharm Res Per 2015; 3(2): e00125.
78. Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26(S3): 3–19.
79. Gan L, Chitturi S, Farrell GC. Mechanisms and implications of age-related changes in the liver: nonalcoholic fatty liver disease in the elderly. Curr Gerontol Geriatr Res 2011; 2011: 831536.
80. Bannister CA, Holden SE, Jenkins‐Jones S, Morgan CL, Halcox JP, Schernthaner G, et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non‐diabetic controls. Diabetes Obes Metab 2014; 16(11): 1165–73.
81. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol 2021; 12: 718942.
82. Piskovatska V, Storey KB, Vaiserman AM, Lushchak O. The use of metformin to increase the human healthspan. Adv Exp Med Biol 2020; 1260: 319–32.
83. Berstein LM. Metformin in obesity, cancer and aging: addressing controversies. Aging (Albany NY) 2012; 4(5): 320–9.
84. Soukas AA, Hao H, Wu L. Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab 2019; 30(10): 745–55.
85. Chele D, Sirbu C, Mitrica M, Toma M, Vasiliu O, Sirbu A, et al. Metformin’s effects on cognitive function from a biovariance perspective: a narrative review. Int J Mol Sci 2025; 26(4): 1783.
Published
2025/10/27
Section
Review article