Анализа корелације нивоа експресије сировинског молекула за адхезију ендотелних ћелија-1 и протеина сиртуин 1 код акутног респираторног дистрес синдрома
Серумски молекул за адхезију ендотелних ћелија-1 и протеин сиртуин 1 код АРДС-а
Sažetak
Objective: To investigate the relationships among serum silencing information regulator 2-related enzyme 1 (SIRT1) expression levels, endothelial cell-specific molecule-1 (ESM-1), and fibroblast growth factor-21 (FGF21) and treatment results in patients with acute respiratory distress syndrome (ARDS) associated with sepsis.
Methods: A total of 140 patients with sepsis-related ARDS were selected and divided into a good outcome group of 96 patients and a poor outcome group of 44 patients according to the treatment outcome. The levels of serum SIRT1, ESM-1 and FGF21 were compared between the two groups; the correlations between serum SIRT1, ESM-1, and FGF21 and the severity of the disease as well as the treatment outcome were analyzed; and the predictive value of serum SIRT1, ESM-1 and FGF21 for treatment outcomes was evaluated.
Results: Compared to the group with a favorable outcome, the bad outcome group's serum SIRT1 level was lower, while the ESM-1 and FGF21 levels were significantly greater than those in the good outcome group (P<0.05). Serum SIRT1 levels steadily declined in patients with mild, moderate, and severe illness, while ESM-1 and FGF21 levels steadily rose (P<0.05). ESM-1 and FGF21 showed a positive association with illness severity (P<0.05), while serum SIRT1 showed a negative correlation (P<0.05) with disease severity, according to Spearman correlation analysis. Partial correlation analysis revealed that the serum SIRT1, ESM-1, and FGF21 levels were significantly correlated with the treatment outcomes of patients with sepsis-related ARDS (P<0.05). Serum SIRT1, ESM-1, and FGF21 levels and treatment outcomes were strongly correlated (P<0.05) in patients with sepsis-related ARDS. Serum SIRT1, ESM-1, and FGF21 areas under the curve (AUCs) for predicting the course of treatment for patients with ARDS associated with sepsis were 0.742, 0.838, and 0.796, respectively. The sensitivity was 77.27%, 77.27%, and 70.45%, and the specificity was 64.58%, 81.25%, and 87.50%, respectively. For patients with sepsis-related ARDS, the combined prediction of the three markers' AUC for treatment outcome was 0.939, with a sensitivity of 88.64% and a specificity of 83.33%, which was significantly greater than the individual predictive value of the three indicators alone (P< 0.05).
Conclusion: The levels of serum SIRT1, ESM-1 and FGF21 in patients with sepsis-related ARDS are strongly connected with both the efficacy of treatment and the severity of the illness, have the ability to independently predict treatment outcomes, and have a greater combined predictive value.
Reference
2.Liu L, Wu L, Chen Y, Deng R, Hu Y, Tu Y, Fang B. Clinical management of sepsis-associated acute respiratory distress syndrome: current evidence and future directions. Front Med (Lausanne). 2025 May 26;12:1531275. doi: 10.3389/fmed.2025.1531275. PMID: 40491760; PMCID: PMC12146371.
3.Zhang N, Zhang H, Yu L, Fu Q. Advances in anti-inflammatory treatment of sepsis-associated acute respiratory distress syndrome. Inflamm Res. 2025 Apr 29;74(1):74. doi: 10.1007/s00011-025-02043-2. PMID: 40298991.
4.Lin S, Yan J, Wang W, Luo L. STAT3-Mediated Ferroptosis is Involved in Sepsis-Associated Acute Respiratory Distress Syndrome. Inflammation. 2024 Aug;47(4):1204-1219. doi: 10.1007/s10753-024-01970-2. Epub 2024 Jan 18. PMID: 38236387.
5.Mu S, Yan D, Tang J, Zheng Z. Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database. J Intensive Care Med. 2025 Mar;40(3):294-302. doi: 10.1177/08850666241281060. Epub 2024 Sep 5. PMID: 39234770.
6.Zhou L, Li S, Tang T, Yuan X, Tan L. A single-center PICU present status survey of pediatric sepsis-related acute respiratory distress syndrome. Pediatr Pulmonol. 2022 Sep;57(9):2003-2011. doi: 10.1002/ppul.25943. Epub 2022 Jun 15. PMID: 35475331.
7.Reilly JP, Zhao Z, Shashaty MGS, Koyama T, Jones TK, Anderson BJ, Ittner CA, Dunn T, Miano TA, Oniyide O, Balmes JR, Matthay MA, Calfee CS, Christie JD, Meyer NJ, Ware LB. Exposure to ambient air pollutants and acute respiratory distress syndrome risk in sepsis. Intensive Care Med. 2023 Aug;49(8):957-965. doi: 10.1007/s00134-023-07148-y. Epub 2023 Jul 20. PMID: 37470831; PMCID: PMC10561716.
8.Chen Y, Wu Y, Zhu L, Chen C, Xu S, Tang D, Jiao Y, Yu W. METTL3-Mediated N6-Methyladenosine Modification of Trim59 mRNA Protects Against Sepsis-Induced Acute Respiratory Distress Syndrome. Front Immunol. 2022 May 25;13:897487. doi: 10.3389/fimmu.2022.897487. PMID: 35693774; PMCID: PMC9174697.
9.Jiang L, Yu C, Xie C, Zheng Y, Xia Z. Enhancing early mortality prediction for sepsis-associated acute respiratory distress syndrome patients via optimized machine learning algorithm: development and multiple databases' validation of the SAFE-Mo. Int J Surg. 2025 Jun 20. doi: 10.1097/JS9.0000000000002741. Epub ahead of print. PMID: 40540448.
10.Zhou Y, Feng J, Mei S, Zhong H, Tang R, Xing S, Gao Y, Xu Q, He Z. MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME. Shock. 2023 Mar 1;59(3):352-359. doi: 10.1097/SHK.0000000000002065. Epub 2023 Jan 10. PMID: 36625493.
11.Jiang Z, Liu L, Du L, Lv S, Liang F, Luo Y, Wang C, Shen Q. Machine learning for the early prediction of acute respiratory distress syndrome (ARDS) in patients with sepsis in the ICU based on clinical data. Heliyon. 2024 Mar 13;10(6):e28143. doi: 10.1016/j.heliyon.2024.e28143. PMID: 38533071; PMCID: PMC10963609.
12.Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021 Apr 20;13(8):10833-10852. doi: 10.18632/aging.202860. Epub 2021 Apr 20. PMID: 33879634; PMCID: PMC8109137.
13.Yan L, Chen Y, Han Y, Tong C. Role of CD8+ T-cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: a prospective observational study. BMC Emerg Med. 2022 Nov 19;22(1):182. doi: 10.1186/s12873-022-00733-2. PMID: 36402952; PMCID: PMC9675152.
14.Li N, Wang H, Zhu L. Impact of Pathogen Status on Sepsis-Associated Acute Respiratory Distress Syndrome Outcomes. Med Sci Monit. 2025 Jun 5;31:e947681. doi: 10.12659/MSM.947681. PMID: 40468576; PMCID: PMC12150808.
15.Li Z, Zheng B, Liu C, Zhao X, Zhao Y, Wang X, Hou L, Yang Z. BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells Int. 2023 Mar 31;2023:7072700. doi: 10.1155/2023/7072700. PMID: 37035447; PMCID: PMC10081904.
16.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
17.Wang Y, Wei A, Su Z, Shi Y, Li X, He L. Characterization of lactylation-based phenotypes and molecular biomarkers in sepsis-associated acute respiratory distress syndrome. Sci Rep. 2025 Apr 22;15(1):13831. doi: 10.1038/s41598-025-96969-6. PMID: 40263316; PMCID: PMC12015483.
18.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
19.Sallee CJ, Hippensteel JA, Miller KR, Oshima K, Pham AT, Richter RP, Belperio J, Sierra YL, Schwingshackl A, Mourani PM, Schmidt EP, Sapru A, Maddux AB. Endothelial Glycocalyx Degradation Patterns in Sepsis-Associated Pediatric Acute Respiratory Distress Syndrome: A Single Center Retrospective Observational Study. J Intensive Care Med. 2024 Mar;39(3):277-287. doi: 10.1177/08850666231200162. Epub 2023 Sep 6. PMID: 37670670; PMCID: PMC10845819.
20.Huang CM, Li JJ, Wei WK. Clinical significance of platelet mononuclear cell aggregates in patients with sepsis and acute respiratory distress syndrome. World J Clin Cases. 2024 Feb 16;12(5):966-972. doi: 10.12998/wjcc.v12.i5.966. PMID: 38414612; PMCID: PMC10895629.
21.Chakradhar A, Baron RM, Vera MP, Devarajan P, Chawla L, Hou PC. Plasma renin as a novel prognostic biomarker of sepsis-associated acute respiratory distress syndrome. Sci Rep. 2024 Mar 20;14(1):6667. doi: 10.1038/s41598-024-56994-3. PMID: 38509149; PMCID: PMC10954703.
22.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
23.Ling Y, Li ZZ, Zhang JF, Zheng XW, Lei ZQ, Chen RY, Feng JH. Retraction notice to "MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome" [Life Sci. 210 (2018) 1-8]. Life Sci. 2023 Jul 15;325:121732. doi: 10.1016/j.lfs.2023.121732. Epub 2023 May 11. PMID: 37179192; PMCID: PMC10174471.
24.Liu X, Li T, Chen H, Yuan L, Ao H. Role and intervention of PAD4 in NETs in acute respiratory distress syndrome. Respir Res. 2024 Jan 30;25(1):63. doi: 10.1186/s12931-024-02676-7. PMID: 38291476; PMCID: PMC10829387.
25.Luo J, Liang J, Wang S, Huang S, Zhou L, Shi Y, Zhang J, Wang Y, Wu BQ, Li L. Serum human epididymis secretory protein 4 correlates with sepsis-associated acute respiratory distress syndrome and 28-day mortality in critically ill patients. Ann Clin Biochem. 2022 Sep;59(5):338-346. doi: 10.1177/00045632221103805. Epub 2022 May 28. PMID: 35549539.
26.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
27.Chen J, Hou R, Xu X, Xie N, Tang J, Li Y, Nie X, Meyer NJ, Su L, Christiani DC, Chen F, Zhang R. Integrative omics and multicohort identify IRF1and biological targets related to sepsis-associated acute respiratory distress syndrome. J Biomed Res. 2025 May 25:1-12. doi: 10.7555/JBR.39.20250066. Epub ahead of print. PMID: 40420582.
28.Wu L, Li H, Liu Y, Fan Z, Xu J, Li N, Qian X, Lin Z, Li X, Yan J. Research progress of 3D-bioprinted functional pancreas and in vitro tumor models. International Journal of Bioprinting. 2024, 10(1), 1256. doi: 10.36922/ijb.1256.
29.Luo M, He Q. Development of a prognostic nomogram for sepsis associated-acute respiratory failure patients on 30-day mortality in intensive care units: a retrospective cohort study. BMC Pulm Med. 2023 Jan 30;23(1):43. doi: 10.1186/s12890-022-02302-6. PMID: 36717800; PMCID: PMC9885567.
30.Xu H, Zhao Y, Zhu C, Xu L, Gao H. [Clinical characteristics and prognosis of acute gastrointestinal injury in patients with sepsis-associated acute respiratory distress syndrome]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Jun;36(6):591-596. Chinese. doi: 10.3760/cma.j.cn121430-20240118-00063. PMID: 38991957.
31.Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines. 2022 Sep 30;10(10):2448. doi: 10.3390/biomedicines10102448. PMID: 36289710; PMCID: PMC9598620.
32.Lin J, Gu C, Sun Z, Zhang S, Nie S. Machine learning-based model for predicting the occurrence and mortality of nonpulmonary sepsis-associated ARDS. Sci Rep. 2024 Nov 15;14(1):28240. doi: 10.1038/s41598-024-79899-7. PMID: 39548234; PMCID: PMC11568264.
33.Feng J, Huang X, Peng Y, Yang W, Yang X, Tang R, Xu Q, Gao Y, He Z, Xing S, Mei S. Pyruvate kinase M2 modulates mitochondrial dynamics and EMT in alveolar epithelial cells during sepsis-associated pulmonary fibrosis. J Transl Med. 2025 Feb 19;23(1):205. doi: 10.1186/s12967-025-06199-7. PMID: 39972351; PMCID: PMC11837412.
Sva prava zadržana (c) 2025 Can Peng, Zhigang Sun, Yanyan Liu, Hao Zhao

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
