Correlation analysis of cytokine levels and Th2, Th17, and Treg cells in allergic rhinitis
Cytokine levels in allergic rhinitis
Abstract
Objective: To explore the roles of Th2, Th17, and regulatory T (Treg) cells and their related cytokines and transcriptional genes in the pathogenesis of allergic rhinitis (AR).
Methods: A total of 200 patients who were diagnosed with AR in our hospital from October 2023 to October 2024 were randomly selected as the AR group. According to the visual analog scale (VAS) score, the AR group was further divided into a mild allergic rhinitis group (MAR group) and a severe allergic rhinitis group (SAR group). Moreover, 50 healthy people who underwent physical examinations at the Physical Examination Center of Ordos Central Hospital composed the healthy control group (HC group). Blood from peripheral veins was drawn on the day of registration. The Th17/Treg ratio and the proportions of helper T 2 (Th2), helper T 17 (Th17), and Using flow cytometry, the number of regulatory T (Treg) cells among the peripheral blood's CD4+T cells was determined. The enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-10 (IL-10), and interleukin-17 (IL-17) in the patients' serum. The genes GATA-3 mRNA, RORyt-mRNA, and FOXP3-mRNA's relative expression levels were assessed using real-time fluorescence quantitative RT-PCR of peripheral blood mononuclear cells.
Results: The peripheral blood of AR patients had larger Th2/Th17/Treg cell proportions and a higher Th17/Treg ratio. The AR group presented greater differences (P<0.05), and both were positively connected with the disease severity, with the SAR group showing larger differences than the MAR group (P<0.05). AR patients had higher peripheral blood levels of IL-4, IL-5, IL-17, and IL-10. The severity of the disease was positively connected with the differences from the AR group (P<0.05) and the SAR group (P<0.05) compared to the HC group and the MAR group, respectively. Patients with AR had higher relative expression levels of the transcription genes FoxP3, RORyt, and GATA-3 in their peripheral blood mononuclear cells. The AR group showed more differences than the HC group (P<0.05), while the SAR group showed more differences than the MAR group (P<0.05). These differences were all positively connected with the illness severity. The relative expression level of GATA-3 mRNA and the serum levels of IL-4 and IL-5 were positively connected with Th2 cells. Th17 cells showed a favorable correlation with both the relative expression level of RORyt-mRNA and the content of serum L-17. Treg cells showed a favorable correlation with both the relative expression level of FoxP3 mRNA and the serum IL-10 levels. Binary logistic regression analysis revealed that an increase in the proportion of Th2 and Th17 cells; a continuous increase in the Th17/Treg ratio; an increase in the concentrations of IL-4, L-5, and IL-17; and an increase in the relative expression levels of GATa-3 mRNA and RORyt-mRNA transcriptional genes were risk factors for SAR.
Conclusion: A persistently elevated Th17/Treg ratio in AR patients indicates progressive exacerbation of AR. The relative expression levels of the transcription genes GATA-3, RORyt-mRNA, and FoxP3-mRNA in peripheral blood mononuclear cells lead to increases in the proportions of Th2, Th17, and Treg cells.
References
2.Li L, Zhang Y, Liu H, Wang T, Li J, Wang X. Exploring causal relationships between inflammatory cytokines and allergic rhinitis, chronic rhinosinusitis, and nasal polyps: a Mendelian randomization study. Front Immunol. 2023 Nov 10;14:1288517. doi: 10.3389/fimmu.2023.1288517. PMID: 38022554; PMCID: PMC10667686.
3.Han H, Chen G, Zhang B, Zhang X, He J, Du W, Li MD. Probiotic Lactobacillus plantarum GUANKE effectively alleviates allergic rhinitis symptoms by modulating functions of various cytokines and chemokines. Front Nutr. 2024 Jan 15;10:1291100. doi: 10.3389/fnut.2023.1291100. PMID: 38288067; PMCID: PMC10822906.
4.Jiang L, Wang C, Zhao R, Cao J, Liu Y, Tian L, Liu M. Silencing SOX11 Alleviates Allergic Rhinitis by Inhibiting Epithelial-Derived Cytokines. Balkan Med J. 2023 Jan 23;40(1):57-65. doi: 10.4274/balkanmedj.galenos.2022.2022-9-31. Epub 2022 Dec 26. PMID: 36571426; PMCID: PMC9874254.
5.Wang X, Shen Y, Hong S, Kang H, Ke X. Changes in type 2 innate lymphoid cells and serum cytokines in sublingual immunotherapy in pediatric patients with allergic rhinitis. BMC Pediatr. 2023 Jan 9;23(1):13. doi: 10.1186/s12887-022-03788-z. PMID: 36624390; PMCID: PMC9827662.
6.Zhu Y, Yu J, Zhu X, Yuan J, Dai M, Bao Y, Jiang Y. Experimental observation of the effect of immunotherapy on CD4+ T cells and Th1/Th2 cytokines in mice with allergic rhinitis. Sci Rep. 2023 Mar 31;13(1):5273. doi: 10.1038/s41598-023-32507-6. Erratum in: Sci Rep. 2023 May 22;13(1):8282. doi: 10.1038/s41598-023-35538-1. PMID: 37002325; PMCID: PMC10066377.
7.Gu J, Qin G, Jiang L, Xu W, Wang Y, Liao J, Pan H, Liang Z. Correlations between IL-36 family cytokines in peripheral blood and subjective and objective assessment results in patients with allergic rhinitis. Allergy Asthma Clin Immunol. 2023 Aug 30;19(1):79. doi: 10.1186/s13223-023-00834-y. PMID: 37649097; PMCID: PMC10470177.
8.Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT, Chai OH. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 2023 Jun;119:110254. doi: 10.1016/j.intimp.2023.110254. Epub 2023 May 8. PMID: 37163921.
9.Yu L, Bi J, Xu B, Yu B, Fu Y. Clinical significance of T helper-1/T helper-2 cytokines in peripheral blood of children with otitis media with effusion and allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2024 Jul;182:111996. doi: 10.1016/j.ijporl.2024.111996. Epub 2024 May 31. PMID: 38879907.
10.Sun X, Xu Y, Zhou J. Angiotensin converting enzyme 2 activation improves allergic rhinitis and suppresses Th2 cytokine release. Immun Inflamm Dis. 2023 Jan;11(1):e763. doi: 10.1002/iid3.763. PMID: 36705419; PMCID: PMC9846113.
11.Chen J, Wang S, Cheng Y, Wang F, Liu X. Expression and clinical significance of interleukin-10, transforming growth factor-β1, and CD4+CD25 cytokines in pediatric allergic rhinitis with allergic asthma. Postepy Dermatol Alergol. 2024 Jun;41(3):276-283. doi: 10.5114/ada.2024.140522. Epub 2024 May 7. PMID: 39027694; PMCID: PMC11253320.
12.Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022 Sep 10;10(9):2248. doi: 10.3390/biomedicines10092248. PMID: 36140350; PMCID: PMC9496572.
13.Ma Y, Yang XH, Tu Y, Athari SS. Survey the effect of drug treatment on modulation of cytokines gene expression in allergic rhinitis. Fundam Clin Pharmacol. 2023 Apr;37(2):340-346. doi: 10.1111/fcp.12847. Epub 2022 Nov 25. PMID: 36314138.
14.Krsmanović L, Arsović N, Bokonjić D, Nešić V, Dudvarski Z, Pavlović D, Dubravac Tanasković M, Ristić S, Elez-Burnjaković N, Balaban R, Ćurčić B, Ivanović R, Vuković N, Vuković M, Milić M, Joksimović B. The Impact of Cytokines on Health-Related Quality of Life in Adolescents with Allergic Rhinitis. Biomedicines. 2024 Feb 13;12(2):428. doi: 10.3390/biomedicines12020428. PMID: 38398030; PMCID: PMC10886792.
15.Xu T, Yang Y. Clinical value of serum IL-27 in allergic rhinitis patients and its relationship with Treg associated cytokine levels. Hum Immunol. 2023 Feb;84(2):130-135. doi: 10.1016/j.humimm.2022.10.007. Epub 2022 Nov 4. PMID: 36344385.
16.Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023 Jun 29;11(7):1861. doi: 10.3390/biomedicines11071861. PMID: 37509501; PMCID: PMC10377220.
17.Zhu Y, Yu J, Zhu X, Yuan J, Dai M, Bao Y, Jiang Y. Author Correction: Experimental observation of the effect of immunotherapy on CD4 + T cells and Th1/Th2 cytokines in mice with allergic rhinitis. Sci Rep. 2023 May 22;13(1):8282. doi: 10.1038/s41598-023-35538-1. Erratum for: Sci Rep. 2023 Mar 31;13(1):5273. doi: 10.1038/s41598-023-32507-6. PMID: 37217692; PMCID: PMC10203349.
18.Ke X, Chen Z, Wang X, Kang H, Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity. 2023 Dec;56(1):2189133. doi: 10.1080/08916934.2023.2189133. PMID: 36938614.
19.Bai J, Tan BK. B Lineage Cells and IgE in Allergic Rhinitis and CRSwNP and the Role of Omalizumab Treatment. Am J Rhinol Allergy. 2023 Mar;37(2):182-192. doi: 10.1177/19458924221147770. PMID: 36848269; PMCID: PMC10830379.
20.Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022 Jan 1;33(1):e590-e603. doi: 10.1097/CAD.0000000000001189. PMID: 34338240; PMCID: PMC8670349.
21.Hu X, Liu S, Jing Z, He Y, Qin G, Jiang L. Immunomodulation in allergic rhinitis: Insights from Th2 cells and NLRP3/IL-18 pathway. Cell Biochem Funct. 2024 Apr;42(3):e3997. doi: 10.1002/cbf.3997. PMID: 38555506.
22.Liu J, Wang M, Tian X, Wu S, Peng H, Zhu Y, Liu Y. New insights into allergic rhinitis treatment: MSC nanovesicles targeting dendritic cells. J Nanobiotechnology. 2024 Sep 19;22(1):575. doi: 10.1186/s12951-024-02748-2. PMID: 39294599; PMCID: PMC11411834.
23.Liu Y, Liu S, Meng L, Fang L, Yu J, Yue J, Li T, Tu Y, Jiang T, Yu P, Wan YZ, Lu Y, Shi L. The function and mechanism of Human nasal mucosa-derived mesenchymal stem cells in allergic rhinitis in mice. Inflamm Res. 2024 Oct;73(10):1819-1832. doi: 10.1007/s00011-024-01933-1. Epub 2024 Aug 24. PMID: 39180692; PMCID: PMC11445352.
24.Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022 Oct 1;33(9):943-959. doi: 10.1097/CAD.0000000000001319. Epub 2022 Aug 9. PMID: 35946526; PMCID: PMC9481295.
25.Wang M, Zhao N, Wang C, Jin ZB, Zhang L. Immunomodulatory properties of mesenchymal stem cells: A potential therapeutic strategy for allergic rhinitis. Allergy. 2023 Jun;78(6):1425-1440. doi: 10.1111/all.15729. Epub 2023 Apr 1. PMID: 36975714.
26.Hızlı Demirkale Z, Alpkıray MF, Engin A, Sönmez AD, Yücel E, Tamay Z, Özdemir C, Deniz G, Çetin Aktaş E. Comparison of Immune Checkpoint Molecule Expression in Different Years of House Dust Mite Subcutaneous Immunotherapy on CD4+T and Treg Cells in Children with Allergic Rhinitis. Balkan Med J. 2024 Sep 6;41(5):387-395. doi: 10.4274/balkanmedj.galenos.2024.2024-6-19. PMID: 39239953; PMCID: PMC11588924.
27.Wang Z, Shahzad KA, Li X, Cai B, Xu M, Li J, Tan F. Immunomodulatory effect of mesenchymal stem cells-derived extracellular vesicles to modulate the regulatory T cells and Th1/Th2 imbalance in peripheral blood mononuclear cells of patients with allergic rhinitis. Scand J Immunol. 2024 Dec;100(6):e13416. doi: 10.1111/sji.13416. Epub 2024 Oct 29. PMID: 39473031.
28.Wu L, Li H, Liu Y, Fan Z, Xu J, Li N, Qian X, Lin Z, Li X, Yan J. Research progress of 3D-bioprinted functional pancreas and in vitro tumor models. International Journal of Bioprinting. 2024, 10(1), 1256. doi: 10.36922/ijb.1256.
29.Ye YM, Zhao YX, Xiang LR, Zou CY, Xiao H, Lu H, Yang H, Hu JJ, Xie HQ. The Immunomodulatory mechanism and research progress of mesenchymal stem cells in the treatment of allergic rhinitis. Stem Cell Res Ther. 2025 Apr 18;16(1):188. doi: 10.1186/s13287-025-04333-2. PMID: 40251675; PMCID: PMC12008879.
30.Shahzad KA, Wang Z, Li X, Li J, Xu M, Tan F. Immunomodulatory effect of PLGA-encapsulated mesenchymal stem cells-derived exosomes for the treatment of allergic rhinitis. Front Immunol. 2024 Jul 8;15:1429442. doi: 10.3389/fimmu.2024.1429442. PMID: 39040099; PMCID: PMC11260627.
31.Wen X, Zhao C, Zhao Y, Yang J, Cheng J, Wang Z. Multifunctional MXene-modified GelMA hydrogel loaded with hypoxia-induced mesenchymal stem cells derived extracellular vesicles alleviates allergic rhinitis in mice. Int J Biol Macromol. 2024 Nov;281(Pt 3):136485. doi: 10.1016/j.ijbiomac.2024.136485. Epub 2024 Oct 10. PMID: 39393745.
32.Chung J, Choi MR, Park SK, Kang JY, Chung EH, Park JT, Kim YM. Inotodiol suppresses allergic inflammation in allergic rhinitis mice. Int Forum Allergy Rhinol. 2023 Sep;13(9):1603-1614. doi: 10.1002/alr.23121. Epub 2023 Jan 18. PMID: 36579475.
33.Xu M, Ren M, Zhang X, Peng W, Li H, Liao W, Xie J, Zhang X. Mesenchymal stem cell-derived small extracellular vesicles restored nasal barrier function in allergic rhinitis via miR-143-GSK3B in human nasal epithelial cells. J Allergy Clin Immunol. 2025 Apr;155(4):1236-1249.e5. doi: 10.1016/j.jaci.2024.10.034. Epub 2024 Nov 12. PMID: 39542141.
34.Yao J, Kong Q, Wang Y, Zhang Y, Wang Q. Mechanism of Kruppel-Like Factor 4 in Pyroptosis of Nasal Mucosal Epithelial Cells in Mice With Allergic Rhinitis. Am J Rhinol Allergy. 2023 May;37(3):337-347. doi: 10.1177/19458924221148568. Epub 2023 Feb 17. PMID: 36799547.
35.Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hUCMSCs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their VEGF-mediated inhibition of dendritic cells maturation. Int Immunopharmacol. 2023 Nov;124(Pt B):110875. doi: 10.1016/j.intimp.2023.110875. Epub 2023 Sep 22. PMID: 37742368.
Copyright (c) 2025 Mei Yao, Luoguo Liu, Jingda Wen, Weishi Zhang

This work is licensed under a Creative Commons Attribution 4.0 International License.
The published articles will be distributed under the Creative Commons Attribution 4.0 International License (CC BY). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided and it is indicated if changes were made. Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Journal of Medical Biochemistry and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
