• Tianqi Zhao Harbin Engineering University, College of Mathematical Sciences, Harbin, PR China
  • Tao Chen Harbin Engineering University, College of Mathematical Sciences, Harbin, PR China
  • Wensheng Ma Harbin Engineering University, College of Aerospace and Civil Engineering, Harbin, PR China


Vibration suppression of a beam-type acoustic metamaterial with periodic cavities filled by a viscoelastic membrane that supports a hollow mass still filled by a viscoelastic membrane that supports a local resonator is investigated. First, the proposed beam-type acoustic metamaterial is modeled as a one-dimensional mass-in-mass-in-mass (MMM) lumped parameter chain with structural damping, and then a mass-in-mass (MM) lumped parameter chain with structural damping is also given for comparison. For the two chains, the influence of structural damping on band structures are considered, and the loss factors associated with all propagating Bloch modes are compared. Finally, as an example, the beam-type metamaterials based on MM model with structural damping and MMM model with structural damping are designed to suppress vibration, respectively. The viscoelastic membranes act as structural damping. The finite element method based on Kirchhoff’s plate theory is developed to capture dynamic displacement fields of different metamaterials. Structural frequency response is calculated for different configurations of cantilevered structures when disturbance is considered. The results show that the proposed beam-type acoustic metamaterial based on MMM model with structural damping has higher dissipation and display high damping and does not sacrifice stiffness than MM model with structural damping.


An, X. Y., Fan, H. L., & Zhang, C. Z. (2020). Elastic wave and vibration bandgaps in planar square m- etamaterial-based lattice structures. Journal of sound and vibration, (475), 115292.

Benchabane, S., Khelif, A., Robert, L., Rauch, J. Y., Pastureaud, T., & Laude, V. (2006). Elastic band gaps for surface modes in an ultrasonic lithium niobate phononic crystal. Photonic crystal materials and devices, (6182), 618216. 

Cenedese, M., Belloni, E., & Braghin, F. (2021). Interaction of Bragg scattering bandgaps and local resonators in mono-coupled periodic structures. Journal of applied physics, 129(12), 124501.

Chen, Y. Y., Barnhart, M. V., Chen, J. K., Hu, G. K., Sun, C. T., & Huang, G. L. (2016). Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Composite Structures, 136, 358-371.

Cinefra, M., de Miduel, A. G., Filippi, M., Houriet, C., Pagni, A., & Carrera, E. (2021). Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera unified Formulation finite elements . Mechanics of Advanced Materials and Structures, 28(5), 476-485. 

Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with simultaneously negative bulk mod-ulus and mass density. Physical review letters, 99 (9), 093904.

Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic metamaterials. MRS Bulleyin, 33(10)931-934.  

Galich, P. I., Fang, N. X., Boyce, M. C., & Rudykh, S. (2017). Elastic wave propagation in finitely deformed layered materials. Journal of the Mechanics and Physics of Solids, 98, 390-410.

Gao, P. L., Climenta, A., Sanchez-Dehesa, J., & Wu, L. Z. (2019). Single-phase metamaterial plates for broadband vibration suppression at low frequencies. Journal of sound and vibration, 444, 108-126. 

Huang, G. L., & Sun, C. T. (2010). Band gaps in a multiresonator acoustic metamaterial. Journal of vibration and acoustics-transactions of the ASME, 132(3) 031003.

Hussein, M. I., & Frazier, M. J. (2013). Metadamping in dissipative metamaterials. Proceedings of the ASME 2013 IMECE, San Diego, California, USA, V014T15A051.

Hussein, M. I., & Frazier, M. J. (2013). Metadamping: an emergent phenomenon in dissipative metamaterials. Journal of sound and vibration, 332 (20), 4767-4774.

Hussein, M. I., Leamy, M. J., & Ruzzene, M. (2014). Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66(4). 

Li, J. Q., Fan, X. L., & Li, F. M. (2020). Numerical and experimental study of a sandwich-like metama-terial plate for vibration suppression. Composite structures, (238), 111969. 

Li, S. B., Dou, Y. H., Chen,T. N., Wang, Z. G., & Guan, Z. R. (2018). A novel metal-matrix phononic crys-tal with a low-frequency, broad and complete, locally-resonant band gap. Modern physics letters B, 32(19), 1850221.

Li, Y. G., Zhu, L., & Chen. T. N. (2017). Plate-type elastic metamaterials for low frequency broad-band elastic wave attenuation. Ultrasonics, 73, 34-42.

Liu, Z. Y., Zhang, X. X., Mao, Y. W., Zhu, Y. Y., Yang, Z. Y., Chan, C. T., & Sheng, P. (2000). Locally resonant sonic materials. Science, 289 (5485) 1734-1736.

Muhammad, & Lim, C. W. (2019). Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps. Physics Letters A, 383(23), 2789-2796.

Nouh, M. A., Aldraihem, O. J., & Baz, A. (2016). Periodic metamaterial plates with smart tunable local resonators. Journal of Intelligent Material Systems and Structures, 27(13), 1829-1845.

Nouh, M., Aldraihem, O. & Baz, M. (2014). Vibration Characteristics of Metamaterial Beams with periodic Local Resonances. Journal of vibration and acoustics-transactions of the ASME, 136(6), 061012.

Pai, P. F. (2010). Metamaterial-based broadband elastic wave absorber. Journal of intelligent material systems and structures, 21(5), 517-528. 

Pai, P. F. (2014). Acoustic metamaterial beams based on multi-frequency vibration absorbers. International journal of mechanical sciences, 79, 195-205.

Peng, H., Pai, P. F., & Deng, H. G. (2015). Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. International journal of mechanical sciences, 103, 104-114.

Raghavan, L., & Phani, A. (2013). Local resonance bandgaps in periodic media: theory and experiment. Journal of the acoustical society of America, 134 (3), 1950-1959.

Sun, H., Du, X., & Pai, P. F. (2010). Theory of metamaterial beams for broadband vibration abso-rption. Journal of intelligent material systems and structures, 21(11), 1085-1101.

Suobin, Li., Dou, Y. H., Chen, T. N., Xu, J. N., Li, B., & Zhang, F. (2019). Designing a broad locally-resonant bandgap in a phononic crystals. Physics Letters A, 383(12), 1371-1377.

Wang, T., Sheng, M. P., Guo, Z. W., & Qin, Q. H. (2016). Flexural wave suppression by an acoustic metamaterial plate. Applied acoustics, 114, 118-124. 

Zhong, H. B., Tian, Y. J., Gao, N. S., Lu, K., & Wu. J. H. (2021). Ultra-thin composite underwater hon-eycomb-type acoustic metamaterial with broadband sound insulation and high hydro-static pressure resistance. Composite structures, (227), 114603. 

Zhou, W.J., Wu, B., Su, Y. P., Liu, D. Y., Chen, W. Q., & Bao, R. H. (2021). Tunable flexural wave band gaps in a prestressed elastic beam with periodic smart resonators. Mechanics of advanced materials and structures, 28(3), 221-228. 

Zhu, R., Huang, G. L., Huang, H. H., & Sun, C. T. (2011). Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Physics letters A, 375, 2863-2867.

Original Scientific Paper