BEAM-TYPE ACOUSTIC METAMATERIAL DESIGN FOR VIBRATION SUPPRESSION WITH STRUCTURAL DAMPING
Sažetak
Vibration suppression of a beam-type acoustic metamaterial with periodic cavities filled by a viscoelastic membrane that supports a hollow mass still filled by a viscoelastic membrane that supports a local resonator is investigated. First, the proposed beam-type acoustic metamaterial is modeled as a one-dimensional mass-in-mass-in-mass (MMM) lumped parameter chain with structural damping, and then a mass-in-mass (MM) lumped parameter chain with structural damping is also given for comparison. For the two chains, the influence of structural damping on band structures are considered, and the loss factors associated with all propagating Bloch modes are compared. Finally, as an example, the beam-type metamaterials based on MM model with structural damping and MMM model with structural damping are designed to suppress vibration, respectively. The viscoelastic membranes act as structural damping. The finite element method based on Kirchhoff’s plate theory is developed to capture dynamic displacement fields of different metamaterials. Structural frequency response is calculated for different configurations of cantilevered structures when disturbance is considered. The results show that the proposed beam-type acoustic metamaterial based on MMM model with structural damping has higher dissipation and display high damping and does not sacrifice stiffness than MM model with structural damping.
Reference
An, X. Y., Fan, H. L., & Zhang, C. Z. (2020). Elastic wave and vibration bandgaps in planar square m- etamaterial-based lattice structures. Journal of sound and vibration, (475), 115292. https://doi.org/10.1016/j.jsv.2020.115292
Benchabane, S., Khelif, A., Robert, L., Rauch, J. Y., Pastureaud, T., & Laude, V. (2006). Elastic band gaps for surface modes in an ultrasonic lithium niobate phononic crystal. Photonic crystal materials and devices, (6182), 618216. https://doi.org/10.1117/12.662220
Cenedese, M., Belloni, E., & Braghin, F. (2021). Interaction of Bragg scattering bandgaps and local resonators in mono-coupled periodic structures. Journal of applied physics, 129(12), 124501. https://doi.org/10.1063/5.0038438
Chen, Y. Y., Barnhart, M. V., Chen, J. K., Hu, G. K., Sun, C. T., & Huang, G. L. (2016). Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Composite Structures, 136, 358-371. https://doi.org/10.1016/j.compstruct.2015.09.048
Cinefra, M., de Miduel, A. G., Filippi, M., Houriet, C., Pagni, A., & Carrera, E. (2021). Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera unified Formulation finite elements . Mechanics of Advanced Materials and Structures, 28(5), 476-485. https://doi.org/10.1080/15376494.2019.1578005
Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with simultaneously negative bulk mod-ulus and mass density. Physical review letters, 99 (9), 093904. https://doi.org/10.1103/PhysRevLett.99.093904
Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic metamaterials. MRS Bulleyin, 33(10)931-934. https://doi.org/10.1557/mrs2008.202
Galich, P. I., Fang, N. X., Boyce, M. C., & Rudykh, S. (2017). Elastic wave propagation in finitely deformed layered materials. Journal of the Mechanics and Physics of Solids, 98, 390-410. https://doi.org/10.1016/j.jmps.2016.10.002
Gao, P. L., Climenta, A., Sanchez-Dehesa, J., & Wu, L. Z. (2019). Single-phase metamaterial plates for broadband vibration suppression at low frequencies. Journal of sound and vibration, 444, 108-126. https://doi.org/10.1016/j.jsv.2018.12.022
Huang, G. L., & Sun, C. T. (2010). Band gaps in a multiresonator acoustic metamaterial. Journal of vibration and acoustics-transactions of the ASME, 132(3) 031003. https://doi.org/10.1115/1.4000784
Hussein, M. I., & Frazier, M. J. (2013). Metadamping in dissipative metamaterials. Proceedings of the ASME 2013 IMECE, San Diego, California, USA, V014T15A051.
Hussein, M. I., & Frazier, M. J. (2013). Metadamping: an emergent phenomenon in dissipative metamaterials. Journal of sound and vibration, 332 (20), 4767-4774. https://doi.org/10.1016/j.jsv.2013.04.041
Hussein, M. I., Leamy, M. J., & Ruzzene, M. (2014). Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66(4). https://doi.org/10.1115/1.4026911
Li, J. Q., Fan, X. L., & Li, F. M. (2020). Numerical and experimental study of a sandwich-like metama-terial plate for vibration suppression. Composite structures, (238), 111969. https://doi.org/10.1016/j.compstruct.2020.111969
Li, S. B., Dou, Y. H., Chen,T. N., Wang, Z. G., & Guan, Z. R. (2018). A novel metal-matrix phononic crys-tal with a low-frequency, broad and complete, locally-resonant band gap. Modern physics letters B, 32(19), 1850221. https://doi.org/10.1142/S0217984918502214
Li, Y. G., Zhu, L., & Chen. T. N. (2017). Plate-type elastic metamaterials for low frequency broad-band elastic wave attenuation. Ultrasonics, 73, 34-42. https://doi.org/10.1016/j.ultras.2016.08.019
Liu, Z. Y., Zhang, X. X., Mao, Y. W., Zhu, Y. Y., Yang, Z. Y., Chan, C. T., & Sheng, P. (2000). Locally resonant sonic materials. Science, 289 (5485) 1734-1736. https://doi.org/10.1126/science.289.5485.1734
Muhammad, & Lim, C. W. (2019). Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps. Physics Letters A, 383(23), 2789-2796. https://doi.org/10.1016/j.physleta.2019.05.039
Nouh, M. A., Aldraihem, O. J., & Baz, A. (2016). Periodic metamaterial plates with smart tunable local resonators. Journal of Intelligent Material Systems and Structures, 27(13), 1829-1845. https://doi.org/10.1177/1045389x15615965
Nouh, M., Aldraihem, O. & Baz, M. (2014). Vibration Characteristics of Metamaterial Beams with periodic Local Resonances. Journal of vibration and acoustics-transactions of the ASME, 136(6), 061012. https://doi.org/10.1115/1.4028453
Pai, P. F. (2010). Metamaterial-based broadband elastic wave absorber. Journal of intelligent material systems and structures, 21(5), 517-528. https://doi.org/10.1177/1045389X09359436
Pai, P. F. (2014). Acoustic metamaterial beams based on multi-frequency vibration absorbers. International journal of mechanical sciences, 79, 195-205. https://doi.org/10.1016/j.ijmecsci.2013.12.013
Peng, H., Pai, P. F., & Deng, H. G. (2015). Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. International journal of mechanical sciences, 103, 104-114. https://doi.org/10.1016/j.ijmecsci.2015.08.024
Raghavan, L., & Phani, A. (2013). Local resonance bandgaps in periodic media: theory and experiment. Journal of the acoustical society of America, 134 (3), 1950-1959. https://doi.org/10.1121/1.4817894
Sun, H., Du, X., & Pai, P. F. (2010). Theory of metamaterial beams for broadband vibration abso-rption. Journal of intelligent material systems and structures, 21(11), 1085-1101. https://doi.org/10.1177/1045389X10375637
Suobin, Li., Dou, Y. H., Chen, T. N., Xu, J. N., Li, B., & Zhang, F. (2019). Designing a broad locally-resonant bandgap in a phononic crystals. Physics Letters A, 383(12), 1371-1377. https://doi.org/10.1016/j.physleta.2019.01.061
Wang, T., Sheng, M. P., Guo, Z. W., & Qin, Q. H. (2016). Flexural wave suppression by an acoustic metamaterial plate. Applied acoustics, 114, 118-124. https://doi.org/10.1016/j.apacoust.2016.07.023
Zhong, H. B., Tian, Y. J., Gao, N. S., Lu, K., & Wu. J. H. (2021). Ultra-thin composite underwater hon-eycomb-type acoustic metamaterial with broadband sound insulation and high hydro-static pressure resistance. Composite structures, (227), 114603. https://doi.org/10.1016/j.compstruct.2021.114603
Zhou, W.J., Wu, B., Su, Y. P., Liu, D. Y., Chen, W. Q., & Bao, R. H. (2021). Tunable flexural wave band gaps in a prestressed elastic beam with periodic smart resonators. Mechanics of advanced materials and structures, 28(3), 221-228. https://doi.org/10.1080/15376494.2018.1553261
Zhu, R., Huang, G. L., Huang, H. H., & Sun, C. T. (2011). Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Physics letters A, 375, 2863-2867. https://doi.org/10.1016/j.physleta.2011.06.006