Решавање проблема целобројног програмирања употребом алгоритма претраге заснованог на антенама тврдокрилаца
Sažetak
Алгоритам претраге заснован на антенама тврдокрилаца (BAS) је нова метахеуристика базирана на једном решењу. Овај алгоритам инспирисан је процесом лова тврдокрилаца. Иако ова метахеуристика има добру способност претраге, она може лако да се заглави у локалном оптимуму када је примењена за решавање тешких оптимизационих проблема. У циљу превазилажења овог проблема у овом раду се предлаже популациони алгоритам претраге заснован на антенама тврдокрилаца (PBAS) за решавање проблема целобројног програмирања. Предложени алгоритам користи способност популације да би извршио претрагу разноликих региона претраге у циљу проналажења оптималног решења. Овај алгоритам тестиран је за решавање девет проблема целобројног програмирања и једаног проблема механичког дизајна. Добијени резултати су упоређени са резултатима других популарних метахеуристика које су претходно примењене за решавање истих проблема. Резултати показују да предложени алгоритам постиже боље резултате за већину проблема.
Reference
Akay, B., & Karaboga, D. (2009). Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm. In: Serra R., Cucchiara R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science, 5883 (pp. 355-364). Springer, Berlin, Heidelberg.
Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014. https://doi.org/10.1007/s10845-010-0393-4.
Brajević I. (2021) A Shuffle-Based Artificial Bee Colony Algorithm for Solving Integer Programming and Minimax Problems. Mathematics, 9(11), 1211. https://doi.org/10.3390/math9111211.
Brajević, I., & Ignjatović, J. (2019). An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems. Journal of Intelligent Manufacturing, 30(6), 2545–2574. https://doi.org/10.1007/s10845-018-1419-6.
Brajević, I., & Stanimirović, P. S. (2018). An improved chaotic firefly algorithm for global numerical optimization. International Journal of Computational Intelligence Systems, 12(1), 131 – 148. https://doi.org/10.2991/ijcis.2018.25905187
Brajević, I., Stanimirović, P. S., Li, S., & Cao, X. (2020). A Hybrid Firefly and Multi-Strategy Artificial Bee Colony Algorithm. International Journal of Computational Intelligence Systems, 13(1), 810 – 821. https://doi.org/10.2991/ijcis.d.200612.001.
Du, B., He, Y., & Zhang, Y. (2020). Open-Circuit Fault Diagnosis of Three-Phase PWM Rectifier Using Beetle Antennae Search Algorithm Optimized Deep Belief Network. Electronics, 9, 1570. https://doi.org/10.3390/electronics9101570.
Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35. https://doi.org/10.1007/s00366-011-0241-y.
Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467. https://doi.org/10.1016/j.asoc.2015.10.048.
Jiang, X., & Li, S. (2018). BAS: Beetle antennae search algorithm for optimization problems. International Journal of Robotics and Control, 1(1) 1–5. https://doi.org/10.5430/ijrc.v1n1p1.
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.
Kennedy, J., & Eberhart, R. (1995), Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks (Perth, Australia) (pp. 1942–1948). Piscataway, NJ: IEEE Service Center.
Khan, A. T., Cao, X., Li, Z., & Li, S. (2021). Enhanced Beetle Antennae Search with Zeroing Neural Network for online solution of constrained optimization. Neurocomputing, 447, 294-306. https://doi.org/10.1016/j.neucom.2021.03.027.
Mafarja, M. M., & Mirjalili, S. (2017). Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing, 260, 302-312. https://doi.org/10.1016/j.neucom.2017.04.053.
Parsopoulos, K., & Vrahatis, M. (2005) Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems. In: Wang L., Chen K., Ong Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, 3612 (pp. 582–591). Springer, Berlin, Heidelberg.
Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026.
Tawhid, M.A., Ali, A.F., & Tawhid, M.A. (2019). Multidirectional harmony search algorithm for solving integer programming and minimax problems. International Journal of Bio-Inspired Computation, 13, 141–158. https://doi.org/10.1504/IJBIC.2019.099179.
Wang, P., Gao, Y., Wu, M., Zhang, F., & Li, G. (2020), In-Field Calibration of Triaxial Accelerometer Based on Beetle Swarm Antenna Search Algorithm. Sensors, 20, 947. https://doi.org/10.3390/s20030947.
Wang, Y., Gao, S., Zhou, M., & Yu, Y. (2021). A Multi-Layered Gravitational Search Algorithm for Function Optimization and Real-World Problems. IEEE/CAA Journal of Automatica Sinica, 8 (1), 94-109. https://doi.org/10.1109/JAS.2020.1003462.
Wu, Q., Ma, Z., Xu, G., Li, S., & Chen, D. (2019). A Novel Neural Network Classifier Using Beetle Antennae Search Algorithm for Pattern Classification. IEEE Access, 7, 64686-64696. https://doi.org/10.1109/ACCESS.2019.2917526.
Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms, Luniver Press.
Zhang, Y., Li, S., & Xu, B. (2021). Convergence analysis of beetle antennae search algorithm and its applications. Soft Computing, 25, 10595–10608. https://doi.org/10.1007/s00500-021-05991-z.
Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 217, 3166–3173. https://doi.org/10.1016/j.amc.2010.08.049.