MEREC-COBRA APPROACH IN E-COMMERCE DEVELOPMENT STRATEGY SELECTION

  • Gabrijela Popović Faculty of Applied Management, Economics and Finance, Belgrade, University Business Academy in Novi Sad, Belgrade, Serbia
  • Đorđe Pucar Faculty of Applied Management, Economics and Finance, Belgrade, University Business Academy in Novi Sad, Belgrade, Serbia
  • Florentin Smarandache Department of Mathematics, University of New Mexico, Gallup, New Mexico, United States of America

Sažetak


The research objective of the paper is to propose a model, based on the Multiple-Criteria Decision-Making (MCDM) methods, that facilitates a selection process of an adequate strategy directed to the development of e-commerce. For that aim, the MEthod based on the Removal Effects of Criteria (MEREC) is applied for defining the criteria weights. The recently proposed COmprehensive Distance Based RAnking (COBRA) method is used for the final assessment and ranking of the considered alternatives. The applicability of the proposed model is tested by using an example borrowed from the literature. Three alternative development strategies are assessed against five evaluation criteria. The final results proved the applicability and reliability of the proposed MCDM model.

Reference

Aggarwal, A. G., & Aakash. (2018). Multi-criteria-based prioritisation of B2C e-commerce website. International Journal of Society Systems Science, 10(3), 201-222. https://doi.org/10.1504/IJSSS.2018.093940

Alharbi, S., & Naderpour, M. (2016, May). E-commerce development risk evaluation using MCDM Techniques. In International conference on decision support system technology (pp. 88-99). Springer, Cham. https://doi.org/10.1007/978-3-319-32877-5_7>

Alfonso, V., Boar, C., Frost, J., Gambacorta, L., & Liu, J. (2021). E-commerce in the pandemic and beyond. BIS Bulletin, 36(9).

Bączkiewicz, A. (2021). MCDM based e-commerce consumer decision support tool. Procedia Computer Science, 192, 4991-5002. https://doi.org/10.1016/j.procs.2021.09.277" target="_blank" rel="noopener">https://doi.org/10.1016/j.procs.2021.09.277>

Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Wątróbski, J., Więckowski, J., & Salabun, W. (2021, December). Towards an e-commerce recommendation system based on MCDM methods. In 2021 International Conference on Decision Aid Sciences and Application (DASA) (pp. 991-996). IEEE. 10.1109/DASA53625.2021.9682356

Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Wątróbski, J., & Sałabun, W. (2021c). Methodical aspects of MCDM based E-commerce recommender system. Journal of Theoretical and Applied Electronic Commerce Research, 16(6), 2192-2229. https://doi.org/10.3390/jtaer16060122

Balázs, G., Mészáros, Z. G., & Péterfi, C. A. (2022). Process Measurement and Analysis in a Retail Chain to Improve Reverse Logistics Efficiency. Operational Research in Engineering Sciences: Theory and Applications. https://doi.org/10.31181/oresta110722120g

Chowdhury, P., & Paul, S. K. (2020). Applications of MCDM methods in research on corporate sustainability: A systematic literature review. Management of Environmental Quality: An International Journal, 31(2), 385-405. https://doi.org/10.1108/MEQ-12-2019-0284" href="https://doi.org/10.1108/MEQ-12-2019-0284"> lang="EN-US" style="font-size: 10pt; font-family: 'Palatino Linotype', 'serif'; color: black; text-decoration-line: none;">>

Fauzdar, C., Gupta, N., Goswami, M., & Kumar, R. (2022). MICMAC Analysis of Industry 4.0 in Indian Automobile Industry. Journal of Scientific and Industrial Research (JSIR), 81(08), 873-881. 10.56042/jsir.v81i08.61847

Gupta, A. (2014). E-Commerce: Role of E-Commerce in today’s business. International Journal of Computing and Corporate Research, 4(1), 1-8.

Ivanović, B., Saha, A., Stević, Ž., Puška, A., & Zavadskas, E. K. (2022). Selection of truck mixer concrete pump using novel MEREC DNMARCOS model. Archives of Civil and Mechanical Engineering, 22(4), 1-21. https://doi.org/10.1007/s43452-022-00491-9>

Karabašević, D., Stanujkić, D., Zavadskas, E. K., Stanimirović, P., Popović, G., Predić, B., & Ulutaş, A. (2020). A novel extension of the TOPSIS method adapted for the use of single-valued neutrosophic sets and hamming distance for e-commerce development strategies selection. Symmetry, 12(8), 1263. https://doi.org/10.3390/sym12081263

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525

Keshavarz-Ghorabaee, M. (2021). Assessment of distribution center locations using a multi-expert subjective–objective decision-making approach. Scientific Reports, 11(1), 1-19. https://doi.org/10.1038/s41598-021-98698-y>

Krstić, M., Agnusdei, G. P., Miglietta, P. P., Tadić, S., & Roso, V. (2022). Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method. Sustainability, 14(9), 5632. https://doi.org/10.3390/su14095632

Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews92, 883-896. https://doi.org/10.1016/j.rser.2018.05.007" target="_blank" rel="noopener">https://doi.org/10.1016/j.rser.2018.05.007>

Li, R., & Sun, T. (2020). Assessing factors for designing a successful B2C E-Commerce website using fuzzy AHP and TOPSIS-Grey methodology. Symmetry, 12(3), 363. https://doi.org/10.3390/sym12030363

Lin, M., Huang, C., Xu, Z., & Chen, R. (2020). Evaluating IoT platforms using integrated probabilistic linguistic MCDM method. IEEE Internet of Things Journal7(11), 11195-11208. 10.1109/JIOT.2020.2997133

Mishra, A. R., Saha, A., Rani, P., Hezam, I. M., Shrivastava, R., & Smarandache, F. (2022). An integrated decision support framework using single-valued-MEREC-MULTIMOORA for low carbon tourism strategy assessment. IEEE Access, 10, 24411-24432. 10.1109/ACCESS.2022.3155171

Naseem, M. H., Yang, J., & Xiang, Z. (2021a). Prioritizing the solutions to reverse logistics barriers for the e-commerce industry in Pakistan based on a fuzzy AHP-TOPSIS approach. Sustainability, 13(22), 12743. https://doi.org/10.3390/su132212743

Naseem, M. H., Yang, J., & Xiang, Z. (2021b). Selection of Logistics Service Provider for the E-Commerce Companies in Pakistan Based on Integrated GRA-TOPSIS Approach. Axioms, 10(3), 208.  https://doi.org/10.3390/axioms10030208

Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in mcdm models: Full consistency method (fucom). Symmetry, 10(9), 393. https://doi.org/10.3390/sym10090393

Torre, N. M., Salomon, V. A., Loche, E., Gazale, S. A., & Palermo, V. M. (2022). Warehouse Location for Product Distribution by E-Commerce in Brazil: Comparing Symmetrical MCDM Applications. Symmetry, 14(10), 1987. https://doi.org/10.3390/sym14101987

Ture, H., Dogan, S., & Kocak, D. (2019). Assessing Euro 2020 strategy using multi-criteria decision-making methods: VIKOR and TOPSIS. Social Indicators Research, 142(2), 645-665. https://doi.org/10.1007/s11205-018-1938-8>

Rani, P., Mishra, A. R., Saha, A., Hezam, I. M., & Pamucar, D. (2022). Fermatean fuzzy Heronian mean operators and MEREC‐based additive ratio assessment method: An application to food waste treatment technology selection. International Journal of Intelligent Systems, 37(3), 2612-2647.  https://doi.org/10.1002/int.22787

Rouyendegh, B. D., Topuz, K., Dag, A., & Oztekin, A. (2019). An AHP-IFT integrated model for performance evaluation of E-commerce web sites. Information Systems Frontiers, 21(6), 1345-1355. https://doi.org/10.1007/s10796-018-9825-z>

Sohaib, O., Naderpour, M., Hussain, W., & Martinez, L. (2019). Cloud computing model selection for e-commerce enterprises using a new 2-tuple fuzzy linguistic decision-making method. Computers & Industrial Engineering, 132, 47-58. https://doi.org/10.1016/j.cie.2019.04.020" target="_blank" rel="noopener">https://doi.org/10.1016/j.cie.2019.04.020>

Sotoudeh-Anvari, A. (2022). The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing, 109238. https://doi.org/10.1016/j.asoc.2022.109238" target="_blank" rel="noopener">https://doi.org/10.1016/j.asoc.2022.109238>

Stanujkic, D., Karabasevic, D., Maksimovic, M., Popovic, G., & Brzakovic, M. (2019). Evaluation of the e-commerce development strategies. Quaestus, 14, 144-152.

Stanujkic, D., Popovic, G., Karabasevic, D., Meidute-Kavaliauskiene, I., & Ulutaş, A. (2021). An integrated simple weighted sum product method—WISP. IEEE Transactions on Engineering Management, 1-12. 10.1109/TEM.2021.3075783

Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231" target="_blank" rel="noopener">https://doi.org/10.1016/j.cie.2019.106231>

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry, 11(3), 350. https://doi.org/10.3390/sym11030350

Štirbanović, Z., Stanujkić, D., Miljanović, I., & Milanović, D. (2019). Application of MCDM methods for flotation machine selection. Minerals Engineering, 137, 140-146. https://doi.org/10.1016/j.mineng.2019.04.014" target="_blank" rel="noopener">https://doi.org/10.1016/j.mineng.2019.04.014>

Tan, T., Mills, G., Papadonikolaki, E., & Liu, Z. (2021). Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Automation in Construction, 121, 103451. https://doi.org/10.1016/j.autcon.2020.103451" target="_blank" rel="noopener">https://doi.org/10.1016/j.autcon.2020.103451>

Trung, D. D., & Thinh, H. X. (2021). A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study. Advances in Production Engineering & Management, 16(4), 443-456.
https://doi.org/10.14743/apem2021.4.412

Ulutaş, A., Stanujkic, D., Karabasevic, D., Popovic, G., & Novaković, S. (2022). Pallet truck selection with MEREC and WISP-S methods. Strategic Management-International Journal of Strategic Management and Decision Support Systems in Strategic Management.

Wang, C. N., Dang, T. T., & Hsu, H. P. (2021). Evaluating sustainable last-mile delivery (LMD) in B2C E-commerce using two-stage fuzzy MCDM approach: A case study from Vietnam. IEEE Access, 9, 146050-146067. 10.1109/ACCESS.2021.3121607

Wu, T., Liu, X., Qin, J., & Herrera, F. (2021). An interval type-2 fuzzy Kano-prospect-TOPSIS based QFD model: Application to Chinese e-commerce service design. Applied Soft Computing, 111, 107665. https://doi.org/10.1016/j.asoc.2021.107665" target="_blank" rel="noopener">https://doi.org/10.1016/j.asoc.2021.107665>

Yazdani, M., Zarate, P., Zavadskas, E. K., & Turskis, Z. (2018). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision. https://doi.org/10.1108/MD-05-2017-0458" href="https://doi.org/10.1108/MD-05-2017-0458"> lang="EN-US" style="font-size: 10pt; font-family: 'Palatino Linotype', 'serif'; color: black; text-decoration-line: none;">>

 

Ziemba, P. (2021). Multi-criteria group assessment of E-commerce websites based on the new PROSA GDSS method–The case of Poland. IEEE Access, 9, 126595-126609.  10.1109/ACCESS.2021.3112573

Objavljeno
2022/12/05
Rubrika
Originalni naučni članak