PREGLED METODOLOGIJA ZA PLANIRANJE PUTA I OPTIMIZACIU MOBILNIH ROBOTA
Sažetak
Abstract: This research paper provides a comprehensive review of methodologies for path planning and optimization of mobile robots. With the rapid development of robotics technology, path planning and optimization have become fundamental areas of research for achieving efficient and safe autonomous robot navigation. In this paper, we review the classic and state-of-the-art techniques of path planning and optimization, including artificial potential fields, A* algorithm, Dijkstra's algorithm, genetic algorithm, swarm intelligence, and machine learning-based methods. We analyze the strengths and weaknesses of each approach and discuss their application scenarios. Moreover, we identify the challenges and open problems in this field, such as dealing with dynamic environments and real-time constraints. This paper serves as a comprehensive reference for researchers and practitioners in the robotics community, providing insights into the latest trends and developments in path planning and optimization for mobile robots.
Reference
Berger, T., & Engzell, P. (2022). Industrial automation and intergenerational income mobility in the United States. Social Science Research, 104, 102686. https://doi.org/10.1016/j.ssresearch.2021.102686
Boor, V., Overmars, M. H., & Van Der Stappen, A. F. (1999, May). The Gaussian sampling strategy for probabilistic roadmap planners. In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C) (Vol. 2, pp. 1018-1023). IEEE. https://doi.org/10.1109/robot.1999.772447>
Cho, S. W., Park, H. J., Lee, H., Shim, D. H., & Kim, S. Y. (2021). Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Computers & Industrial Engineering, 161, 107612. https://doi.org/10.1016/j.cie.2021.107612>
Das, P. K., Behera, H. S., Das, S., Tripathy, H. K., Panigrahi, B. K., & Pradhan, S. K. (2016). A hybrid improved PSO-DV algorithm for multi-robot path planning in a clutter environment. Neurocomputing, 207, 735-753. https://doi.org/10.1016/j.neucom.2016.05.057>
Dijkstra, E. W. (2022). A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy (pp. 287-290). https://doi.org/10.1145/3544585.3544600
Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial life, 5(2), 137-172. https://doi.org/10.1162/106454699568728>
Farooq, B., Bao, J., Raza, H., Sun, Y., & Ma, Q. (2021). Flow-shop path planning for multi-automated guided vehicles in intelligent textile spinning cyber-physical production systems dynamic environment. Journal of manufacturing systems, 59, 98-116. https://doi.org/10.1016/j.jmsy.2021.01.009>
Hart, P. E., Nilsson, N. J., & Raphael, B. (1972). Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost Paths.” ACM SIGART Bulletin, 37, 28–29. https://doi.org/10.1145/1056777.1056779
Kassawat, M., Cervera, E., & del Pobil, A. P. (2022). An omnidirectional platform for education and research in cooperative robotics. Electronics, 11(3), 499. https://doi.org/10.3390/electronics11030499
Kavraki, L. E., Kolountzakis, M. N., & Latombe, J. C. (1998). Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and automation, 14(1), 166-171. https://doi.org/10.1109/70.660866>
Kennedy, J. A. M. E. S. (1995, June). Eberhart, r.: Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942-1948). https://doi.org/10.1109/icnn.1995.488968>
Khatib, O. (1986). The potential field approach and operational space formulation in robot control. Adaptive and Learning Systems: Theory and Applications, 367-377. https://doi.org/10.1007/978-1-4757-1895-9_26>
Koenig, S., & Likhachev, M. (2002). D^* lite. Aaai/iaai, 15, 476-483.
Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7), 846-894. https://doi.org/10.1177/0278364911406
LaValle, S. M., & Kuffner, J. J. (2001). Rapidly-exploring random trees: Progress and prospects: Steven M. Lavalle, Iowa State University, a James J. Kuffner, Jr., University of Tokyo, Tokyo, Japan. Algorithmic and computational robotics, 303-307.
Lee, D. T., & Lin, A. K. (1986). Generalized Delaunay triangulation for planar graphs. Discrete & Computational Geometry, 1(3), 201-217.
Li, P., Yang, H., Li, H., & Liang, S. (2022). Nonlinear ESO-based tracking control for warehouse mobile robots with detachable loads. Robotics and Autonomous Systems, 149, 103965. https://doi.org/10.1016/j.robot.2021.103965" target="_blank" rel="noopener">https://doi.org/10.1016/j.robot.2021.103965>
Lin, S., Liu, A., Wang, J., & Kong, X. (2023). An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. Journal of Computational Science, 67, 101938. https://doi.org/10.1016/j.jocs.2022.101938" target="_blank" rel="noopener">https://doi.org/10.1016/j.jocs.2022.101938>
Likhachev, M., & Ferguson, D. (2009). Planning long dynamically feasible maneuvers for autonomous vehicles. The International Journal of Robotics Research, 28(8), 933-945. https://doi.org/10.1177/0278364909340445>
Lonklang, A., & Botzheim, J. (2022). Improved Rapidly Exploring Random Tree with Bacterial Mutation and Node Deletion for Offline Path Planning of Mobile Robot. Electronics, 11(9), 1459. https://doi.org/10.3390/electronics11091459>
Luo, F., Zhou, Q., Fuentes, J., Ding, W., & Gu, C. (2022). A Soar-Based Space Exploration Algorithm for Mobile Robots. Entropy, 24(3), 426. https://doi.org/10.3390/e24030426>
Luan, P. G., & Thinh, N. T. (2023). Hybrid genetic algorithm based smooth global-path planning for a mobile robot. Mechanics Based Design of Structures and Machines, 51(3), 1758-1774. https://doi.org/10.1080/15397734.2021.1876569>
Nash, A., & Koenig, S. (2019). Theta* for Any-Angle Pathfinding. In Game AI Pro 360 (pp. 125-136). CRC Press.
Norouzi, M., Miro, J. V., & Dissanayake, G. (2017). Planning stable and efficient paths for reconfigurable robots on uneven terrain. Journal of Intelligent & Robotic Systems, 87, 291-312. https://doi.org/10.1007/s10846-017-0495-8
Orozco-Rosas, U., Montiel, O., & Sepúlveda, R. (2019). Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing, 77, 236-251. https://doi.org/10.1016/j.asoc.2019.01.036>
Panda, M., Das, B., Subudhi, B., & Pati, B. B. (2020). A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, 17(3), 321-352. https://doi.org/10.1007/s11633-019-1204-9>
Pandey, A., & Parhi, D. R. (2017). Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm. Defence Technology, 13(1), 47-58. https://doi.org/10.1016/j.dt.2017.01.001>
Pütz, S., Wiemann, T., Piening, M. K., & Hertzberg, J. (2021, May). Continuous shortest path vector field navigation on 3d triangular meshes for mobile robots. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2256-2263). IEEE. https://doi.org/10.1109/icra48506.2021.9560981>
Py, F., Robbiani, G., Marafioti, G., Ozawa, Y., Watanabe, M., Takahashi, K., & Tadokoro, S. (2022, November). SMURF software architecture for low power mobile robots: Experience in search and rescue operations. In 2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 264-269). IEEE. https://doi.org/10.1109/ssrr56537.2022.10018809>
Sahoo, S. K., & Choudhury, B. B. (2021). A Fuzzy AHP Approach to Evaluate the Strategic Design Criteria of a Smart Robotic Powered Wheelchair Prototype. In Intelligent Systems: Proceedings of ICMIB 2020 (pp. 451-464). Singapore: Springer Singapore.
Sahoo, S., & Choudhury, B. (2022). Optimal selection of an electric power wheelchair using an integrated COPRAS and EDAS approach based on Entropy weighting technique. Decision Science Letters, 11(1), 21-34. https://doi.org/10.5267/j.dsl.2021.10.002>
Sahoo, S. K., Das, A. K., Samanta, S., & Goswami, S. S. (2023). Assessing the Role of Sustainable Development in Mitigating the Issue of Global Warming. Journal of process management and new technologies, 11(1-2), 1-21. https://doi.org/10.5937/jpmnt11-44122
Sahoo, S., & Choudhury, B. (2023). Voice-activated wheelchair: An affordable solution for individuals with physical disabilities. Management Science Letters, 13(3), 175-192. https://doi.org/10.5267/j.msl.2023.4.004>
Sahoo, S., & Goswami, S. (2024). Theoretical framework for assessing the economic and environmental impact of water pollution: A detailed study on sustainable development of India. Journal of Future Sustainability, 4(1), 23-34. https://doi.org/10.5267/j.jfs.2024.1.003>
Salem, I. E., Mijwil, M. M., Abdulqader, A. W., & Ismaeel, M. M. (2022). Flight-schedule using Dijkstra's algorithm with comparison of routes findings. International Journal of Electrical and Computer Engineering, 12(2), 1675. https://doi.org/10.1007/978-981-33-6081-5_40>
Sandakalum, T., & Ang Jr, M. H. (2022). Motion planning for mobile manipulators—a systematic review. Machines, 10(2), 97. https://doi.org/10.3390/machines10020097
Shin, H., & Chae, J. (2020). A performance review of collision-free path planning algorithms. Electronics, 9(2), 316. https://doi.org/10.3390/electronics9020316
Shin, H., Na, K. I., Chang, J., & Uhm, T. (2022). Multimodal layer surveillance map based on anomaly detection using multi‐agents for smart city security. ETRI Journal, 44(2), 183-193. https://doi.org/10.4218/etrij.2021-0395
Short, Andrew, Zengxi Pan, Nathan Larkin, and Stephen Van Duin. "Recent progress on sampling based dynamic motion planning algorithms." In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1305-1311. IEEE, 2016. https://doi.org/10.1109/aim.2016.7576950>
Stentz, A. (1994). The D* Algorithm for Real-Time Planning of Optimal Traverses. Carnegie-Mellon Univ Pittsburgh Pa Robotics Inst. https://doi.org/10.1007/BF02187695>
Yenugula, M., Sahoo, S., & Goswami, S. (2023). Cloud computing in supply chain management: Exploring the relationship. Management Science Letters, 13(3), 193-210. https://doi.org/10.5267/j.msl.2023.4.003>
Yenugula, M., Sahoo, S., & Goswami, S. (2024). Cloud computing for sustainable development: An analysis of environmental, economic and social benefits. Journal of future sustainability, 4(1), 59-66. https://doi.org/10.5267/j.jfs.2024.1.005>
Zhang, X., Guo, Y., Yang, J., Li, D., Wang, Y., & Zhao, R. (2022). Many-objective evolutionary algorithm based agricultural mobile robot route planning. Computers and Electronics in Agriculture, 200, 107274. https://doi.org/10.1016/j.compag.2022.107274
Zhong, X., Tian, J., Hu, H., & Peng, X. (2020). Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment. Journal of Intelligent & Robotic Systems, 99, 65-77. https://doi.org/10.1007/s10846-019-01112-z>