INTEGRATING ARTIFICIAL INTELLIGENCE INTO CENTRAL BANKING: OPPORTUNITIES, CHALLENGES, AND IMPLICATIONS
Sažetak
Veštačka inteligencija se sve više koristi u različitim oblastima, uključujući centralno bankarstvo, za poboljšanje donošenja odluka, efikasnosti poslovanja i upravljanja rizikom. Danas praktično sve centralne banke istražuju upotrebu veštačke inteligencije u svom poslovanju, kao što su ekonomsko predviđanje, analiza rizika, istraživanje politike i analiza tržišta. Sve ovo može pomoći da se poveća otpornost finansijskog sistema u vreme kada globalna ekonomija postaje međusobno povezana i složenija. S druge strane, od vitalnog je značaja istaći nove prepreke veštačke inteligencije, kao što su sajber bezbednost, privatnost podataka i transparentnost algoritama, sa kojima centralne banke moraju da se pozabave da bi efikasno iskoristile prednosti implementacije veštačke inteligencije. Prilikom primene veštačke inteligencije, centralne banke treba da zauzmu temeljan i uravnotežen pristup, uzimajući u obzir etičke, pravne i društvene implikacije, dok maksimalno iskoriste sve prednosti koje veštačka inteligencija može da pruži. Kontinuirano praćenje regulatornih okvira i međunarodna saradnja mogu pomoći centralnim bankama u realizaciji potencijala ovih tehnologija. U ovom radu analiziraćemo funkciju veštačke inteligencije u centralnom bankarstvu. Ispitaćemo prednosti, izazove i rizike, kao i upotrebu veštačke inteligencije u poslovanju vodećih centralnih banaka, sa posebnim akcentom na njeno korišćenje u bankarskom sektoru Srbije.
Reference
Araujo, D., Doerr, S., Gambacorta, L. & Tissot, B. (2024). Artificial intelligence in central banking, Bank for International Settlement, BIS Bulletin No 84, 1-9.
Cheatham, B., Javanmardian, K. & Samandari, H. (2019). Confronting the risks of artificial intelligence, McKinsey Quarterly, 1-9.
Da Costa, S. (2018). How Artificial Intelligence is changing the banking sector? La Rochelle Business School, 1-90.
Dirican, C. (2015). The Impacts of Robotics, Artificial Intelligence on Business and Economics. Procedia - Social and Behavioral Sciences, 195 (2015), 564 – 573.
Dzhaparov, P. (2020). Application of blockchain and artificial intelligence in bank risk management. Economics and Management, 17(1), 43-57.
FSB - Financial Stability Board (2017). Artificial intelligence and machine learning in financial services: Market developments and financial stability implications, Available at: https://www.fsb.org/wp-content/uploads/P011117.pdf (04.03.2024.)
Ghandour, A. (2021). Opportunities and Challenges of Artificial Intelligence in Banking: Systematic Literature Review. Technology, Education, Management, Informatics (TAM) Journal, 10(4), 1581-1587. https://doi.org/10.18421/TEM104-12
https://nbs.rs/en/scripts/showcontent/index.html?id=18981 (13.03.2024.)
https://www.bankingsupervision.europa.eu/press/interviews/date/2024/html/ssm.in240226~c6f7fc9251.en.html (12.03.2024.)
https://www.bankingsupervision.europa.eu/press/publications/newsletter/2023/html/ssm.nl231115_2.en.html (12.03.2024.)
https://www.bankofengland.co.uk/prudential-regulation/publication/2023/october/artificial-intelligence-and-machine-learning (12.03.2024.)
https://www.ecb.europa.eu/press/blog/date/2023/html/ecb.blog230928~3f76d57cce.en.html (12.03.2024.)
https://www.federalreserve.gov/newsevents/speech/cook20230922a.htm (11.03.2024.)
https://www.minneapolisfed.org/article/2023/across-the-fed-a-mindful-exploration-of-ai-is-underway (11.03.2024.)
Kaya, O. (2019). Artificial intelligence in banking: A lever for profitability with limited implementation to date. Deutsche Bank Research, 1-9.
Khan, A. & Malaika, M. (2021). Central Bank Risk Management, Fintech, and Cybersecurity. International Monetary Fund, IMF Working Paper WP/21/105, 1-76.
Kruse, L., Wunderlich, N. & Beck, R. (2019). Artificial Intelligence for the Financial Services Industry: What Challenges Organizations to Succeed. Proceedings of the 52nd Hawaii International Conference on System Sciences, 6408-6417.
Martin, V. (2021). Analysis of capital buffers in Serbia. Annals, Faculty of Economics in Subotica, University of Novi Sad, 57(46), 73-87. https://doi.org/10.5937/AnEkSub2146073M
Martin, V. (2022). Countercyclical Capital Buffer Analysis in Serbia. Ekonomski vidici, Society of economists Belgrade, 1(2), 1-21.
Mcmullen, M. (2023). AI in Finance — 5 Benefits for Better Banking. Towards AWS, Available at: https://towardsaws.com/ai-in-finance-5-benefits-for-better-banking-70cbaae31911 (04.03.2024.)
Mi Alnaser, F., Rahi, S., Alghizzawi, M. & Hafaz Ngah, A. (2023). Does artificial intelligence (AI) boost digital banking user satisfaction? Integration of expectation confirmation model and antecedents of artificial intelligence enabled digital banking. Heliyon, 9(2023), 1-14. https://doi.org/10.1016/j.heliyon.2023.e18930
Milojević, N. & Redzepagic, S. (2021). Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management. Journal of Central Banking Theory and Practice, 3(2021), 41-57. https://doi.org/10.2478/jcbtp-2021-0023
Mullin, J. (2023). Artificial Intelligence and Bank Supervision. Econ Focus, Federal Reserve Bank of Richmond, 23(2Q), 8-11.
Oxford Insights and the International Development Research Centre, Available at: https://oxfordinsights.com/ai-readiness/ai-readiness-index/ (14.03.2024.)
Ozili, P. K. (2024). Artificial Intelligence in Central Banking: Benefits and Risks of AI for Central Banks. Industrial Applications of Big Data, AI, and Blockchain, 70-82. https://doi.org/10.4018/979-8-3693-1046-5.ch004
Piotrowski, D. & Orzeszko, W. (2023). Artificial intelligence and customers’ intention to use robo-advisory in banking services. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 967–1007. https://doi.org/10.24136/eq.2023.031
Strategy for the Development of Artificial Intelligence in the Republic of Serbia for the period 2020-2025, Available at: https://www.srbija.gov.rs/tekst/437277/strategija-razvoja-vestacke-inteligencije-u-republici-srbiji-za-period-20202025-godine.php (14.03.2024.)
Sugiharto, B., Simanungkalit, R., Siregar, I. & Andriani, M. (2023). Artificial Intelligence (AI) Architecture for Integrated Smart Digital Banking System. Journal Penelitian Pendidikan IPA, 9(10), 876–882. https://doi.org/10.29303/jppipa.v9i10.4645
Wibisono, O., Dhini Ari, H., Widjanarti, A., Andhika Zulen, A. & Tissot, B. (2019). The use of big data analytics and artificial intelligence in central banking. International Finance Corporation, IFC Bulletin No 50, 1-20.
Yadav, N., Sharma, L. & Dhake, U. (2024). Artificial Intelligence: The Future. International Journal of Scientific Research in Engineering and Management, 8(1), 1-6. https://doi.org/10.55041/IJSREM27796
Yamaoka, H. (2023). The Future of Central Banking. The Journal of Accounting, Economics, and Law, 13(2), 103-132. https://doi.org/10.1515/ael-2019-0003