English
Sažetak
Predictions across multiple disciplines rely on the efficacy of fundamental artificial neural networks, such as multilayer perceptron (MLP). Optimization is a key step in improving predictive performance of these models. In this study, a global nonlinear neural model was developed to predict the impact of using the digital technology in society, the economy and public administration on economic development. By conducting 17 experiments on the basic MLP neural network, authors investigated the effects of modifying the network architecture, learning rate and type of activation function. Standard measures of model errors and coefficient of determination were employed as criteria to prioritize configurations using the PROMETHEE II multi-criteria approach. The results reveal that models featuring two hidden layers, reduced learning speed and adequate activation functions achieve optimal performance with MSE16=0.012, RMSE16=0.110, MAPE16=12.186 and R²16=0.719. Conversely, too complex models complicate the learning process and lead to imprecise predictions as in the case of MSE5=0.019, RMSE5=0.138, MAPE5=17.225 and R²5=0.559. The results indicate the importance of adjusting the neural network hyperparameters to the nature of the research problem. Additionally, the study reveals the important role of MCDM in choosing the most adequate configuration when considering diverse criteria with different targets.
Reference
Abdurrakhman, A., Sutiarso, L., Ainuri, M., Ushada, M., & Islam, M. P. (2025). A Multilayer Perceptron Feedforward Neural Network and Particle Swarm Optimization Algorithm for Optimizing Biogas Production. Energies, 18(4), 1002.
Agrawal, P. (2024). A Survey on Hyperparameter Optimization of Machine Learning Models. In 2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 11-15). IEEE.
Arcidiacono, S. G., Corrente, S., & Greco, S. (2018). GAIA-SMAA-PROMETHEE for a hierarchy of interacting criteria. European Journal of Operational Research, 270(2), 606-624.
Atasever, Ü. H., & Bozdağ, A. (2025). Carbon footprint mapping of urban areas in Türkiye using hyperparameter-optimized machine learning techniques. International Journal of Environmental Science and Technology, 1-24.
Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European journal of Operational research, 200(1), 198-215.
Bekdaş, G., Aydın, Y., Işıkdağ, U., Nigdeli, S. M., Hajebi, D., Kim, T. H., & Geem, Z. W. (2025). Shear Wave Velocity Prediction with Hyperparameter Optimization. Information, 16(1), 60.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning. Springer.
Brans, J. P., & De Smet, Y. (2016). PROMETHEE methods. Multiple criteria decision analysis: state of the art surveys, 187-219.
Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European journal of operational research, 24(2), 228-238.
Chander, G. P., & Das, S. (2025). A hybrid decision support system in medical emergencies using artificial neural network and hyperbolic secant grey wolf optimization techniques. Cluster Computing, 28(1), 43.
Cihan, P. (2025). Bayesian Hyperparameter Optimization of Machine Learning Models for Predicting Biomass Gasification Gases. Applied Sciences, 15(3), 1018.
Cros, D., Rouan, L., Navratil, D., Tchounke, B., Leroy, N., Le Squin, S., Ulfah, N., Nodichao, L., & Beurier, G. (2025). Optimizing artificial neural network methodologies for enhanced genomic predictions: a case study with oil palm (Elaeis guineensis) data.
Da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F. (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer International Publishing.
Doan, N. A. V., & De Smet, Y. (2018). An alternative weight sensitivity analysis for PROMETHEE II rankings. Omega, 80, 166-174.
Dutta. S,. & Lanvin. B. (2024). Network readiness index. Building a Digital Tomorrow: Public-Private Partnerships for Digital Readiness. Available at: https://networkreadinessindex.org/
Flachs, A., & De Smet, Y. (2025). Inverse optimization on the evaluations of alternatives in the PROMETHEE II ranking method. Omega, 103325.
Jamasb, B., Khayami, S. R., Akbari, R., & Taheri, R. (2025). An Automated Framework for Prioritizing Software Requirements. Electronics, 14(6), 1220.
Jierula, A., Wang, S., Oh, T. M., & Wang, P. (2021). Study on accuracy metrics for evaluating the predictions of damage locations in deep piles using artificial neural networks with acoustic emission data. Applied Sciences, 11(5), 2314.
Khaleq Zghair, N. A., & Issa, A. S. (2025). Development of an Intelligent System Based on Deep Neural Network Models with Advanced Algorithms for Hyper-parameter Tuning and Weight Updates Across Diverse Datasets. International Journal of Intelligent Engineering & Systems, 18(1), 847-859.
Kumar, R. (2025). A Comprehensive Review of MCDM Methods, Applications, and Emerging Trends. Decision Making Advances, 3(1), 185-199.
Liyew, C. M., Di Nardo, E., Ferraris, S., & Meo, R. (2025). Hyperparameter Optimization of Machine Learning Models for Predicting Actual Evapotranspiration, 5123630.
Longsheng, C., & Shah, S. A. A. (2025). A multi-method framework integrating ANP-ANN and PROMETHEE-GAIA for Circular Economy performance assessment: A case study of China. Journal of Cleaner Production, 145311.
Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination press.
Onakpojeruo, E. P., Uzun, B., & Al-Turjman, F. (2025). Reinforcement Learning Models in Stock Trading. NEU Journal for Artificial Intelligence and Internet of Things, 4(1), 72-85.
Parreiras, R. O., & Vasconcelos, J. A. (2007). A multiplicative version of Promethee II applied to multiobjective optimization problems. European Journal of Operational Research, 183(2), 729-740.
Pohl, E., & Geldermann, J. (2024). PROMETHEE-Cloud: A web app to support multi-criteria decisions. EURO Journal on Decision Processes, 12, 100053.
Popović, S., Viduka, D., Bašić, A., Dimić, V., Djukic, D., Nikolić, V., & Stokić, A. (2025). Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis. Electronics, 14(3), 562.
Qasim Jebur Al-Zaidawi, M., & Çevik, M. (2025). Advanced Deep Learning Models for Improved IoT Network Monitoring Using Hybrid Optimization and MCDM Techniques. Symmetry, 17(3), 388.
Ran, L., Yan, G., Goyal, V., Abdullaev, S., Alhomayani, F. M., Le, L. T., Ayadi, M., Alharbi, F. S., Alzubaidi, L. H., Albaijan, I., & Khan, B. (2024). Advancing solar thermal utilization by optimization of phase change material thermal storage systems: A hybrid approach of artificial neural network (ANN)/Genetic algorithm (GA). Case Studies in Thermal Engineering, 64, 105513.
Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336-1354.
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. J. O. G. R. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore geology reviews, 71, 804-818.
Shiomi, K., Sato, T., & Kita, E. (2025). Comparison of Particle Swarm Optimization Algorithms in Hyperparameter Optimization Problem of Multi Layered Perceptron. Computer Assisted Methods in Engineering and Science.
Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
Soares, R. C., Silva, J. C., de Lucena Junior, J. A., Lima Filho, A. C., de Souza Ramos, J. G. G., & Brito, A. V. (2025). Integration of Bayesian optimization into hyperparameter tuning of the particle swarm optimization algorithm to enhance neural networks in bearing failure classification. Measurement, 242, 115829.
SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
Sydenham, P. H., & Thorn, R. (Eds.). (2005). Handbook of measuring system design (Vol. 3). John Wiley & Sons.
Talebi, M., Rezvanjou, S., Ghafourian, H., & Shoushtari, F. (2025). Machine Learning-Driven Multi-Criteria Decision-Making Models for Optimizing Sustainable Infrastructure Deployment: Electric Vehicles and Renewable Energy Systems, 5121862.
Tang, S., Zhu, Y., & Yuan, S. (2022). An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal. Engineering Failure Analysis, 138, 106300.
Tanveer, H., Adam, M. A., Khan, M., & Ali, M. (2024). Analyzing the Performance and Efficiency of Machine Learning Algorithms, such as Deep Learning, Decision Trees, or Support Vector Machines, on Various Datasets and Applications. The Asian Bulletin of Big Data Management, 3, 126-136.
Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. arXiv preprint arXiv:2003.05689.
Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D., & Zhang, Y. (2022). Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Research, 109, 1-17.
Zlaugotne, B., Zihare, L., Balode, L., Kalnbalkite, A., Khabdullin, A., & Blumberga, D. (2020). Multi-criteria decision analysis methods comparison. Rigas Tehniskas Universitates Zinatniskie Raksti, 24(1), 454-471.
