NOVA METODA ZA ESTIMACIJU PARAMETARA SLOŽENO-HARMONIJSKOG ENERGETSKOG SIGNALA
Sažetak
U radu je predložena potpuno nova procedura za esimaciju kako noseće frekvencije, tako i amplitude i faze harmonijskih komponenti energetskog signal koje je predmet procesiranja, kroz sistematski i analitički pristup. Postignuto je smanjenje kompleksnosti u procesiranju kroz potpuno nove svedene analitičke izraze, čime se omogućuje brza estimacija uz malu numeeričku grešku. Čiste sinusne komponente su izdvojene iz ulaznog složeno-harmonjskog signala uz upotrebu filtara sa konačnim impulsnim odzivom (FIR). Predloženi algoritam je zasnovan na parcijalnoj derivaciji procesiranog signala, uz dodatnu težinsku estimacionu proceduru, kako bi se izvršio obračun frekvencije, amplitude i faze složeno-harmonijskog signala. Predloženi algoritam se može upotrebiti u procesu signalne rekonstrukcije, estimacije spektra, sistemkoj identifikaciji, kao i u drugim bitnim problemima vezanim za procesiranje signala. Rezultati simulacije su potvrdili efektivnost predloženog algoritma.
Reference
Estimation using Sliding Window Based LMS. IEEE International Conference on Signal and Image Processing Applications (ICSIPA) 2013, pp. 327-332
Petrovic, P. (2012a) ‘Algorithm for simultaneous parameters estimation of multi-harmonic signal. Metrology&Measurement Sistems, 19(4), 693-702.
Arrillaga, J., & Watson, N.R. (2003). Power System Harmonics. John Wiley&Sons.
Chang, Y.N., Hsieh, Y.C., & Moo, C.S. (2000). Truncation effects of FFT on estimation of dynamic harmonics in power system. Int. Conf. Power Syst. Technol., (3), pp. 1155–1160
Jain, S.K., & Singh, S.N. (2011). Harmonics estimation in emerging power system: Key issues and challenges. Electric Power Systems Research, 81(9), 1754–1766.
Macias, J.A.R., & Exposito, A.G. (2006). Self-tuning of Kalman filters for harmonic computation. IEEE Trans. Power Del., 21(1), 501–503.
Chen, C.I., Chang, G.W., Hong, R.C., & Li, H.M. (2010). Extended real model of Kalman Filter for time-varying harmonics estimation. IEEE Trans. Power Del., 25(1), 17–26.
Wu, X., He, W., Zhang, Z., Dengm J., & Li, B. (2008). The harmonics analysis of power system based on artificial neural network. World Automation Congress, pp. 1-4.
Chang, G.W., Chen, C.I., & Teng, Y.F. (2010). Radial-basis-function-based neural network for harmonic detection. IEEE Trans. Ind. Electron., 57(6), 2171–2179.
Sarkar, A., Choudhury, S.R., & Sengupta, S. (2011). A self-synchronized ADALINE network for on-line tracking of power system harmonics. Measurement, 44(4), 784–790.
Terzija, V.V. (2003). Improved recursive Newton-type algorithms for frequency and spectra estimation in power systems. IEEE Trans. Instrum. Meas., 52(5), 1654-1659.
Dash, P.K., & Hasan, S. (2011). A Fast Recursive Algorithm for the Estimation of Frequency, Amplitude, and Phase of Noisy Sinusoid. IEEE Trans. on Ind. Elec., 58(10), 4847-4856.
Petrovic, P. B. & Rozgic, D. (2018). Computational Effective Modified Newton-Raphson Algorithm for Power Harmonics Parameters Estimation. IET Signal Processing, 12(5), 590 – 598.
Sidhu, T. T. (1999). Accurate measurement of power system frequency using a digital signal processing technique. IEEE Trans. Instrum. Meas., 48(1), 75-81.
Arpaia, P., Cruz Serra, A., Daponte, P., & Monteiro, C.L. (2001). A critical note to IEEE 1057-94 standard on hysteretic ADC dynamic testing. IEEE Trans. Instrum. Meas., 50(4), 941-948.
Kuseljevic, M. D. (2008). A simple method for design of adaptive filters for sinusoidal signals. IEEE Trans. Instrum. Meas., 57 (10), 2242-2249.
Wu, J., Long, J., & J. Wang (2005). High-accuracy, wide-range frequency estimation methods for power system signals under nonsinusoidal conditions. IEEE Trans. Power Delivery, 20(1), 366-374.
So, H. C., Chan, K. W., Chan, Y. T., & Ho, K. C. (2005). Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses. IEEE Trans. Signal Process., 53(7), 2290-2305.
Klein, J. D. (2006). Fast algorithms for single frequency estimation. IEEE Trans. Signal Process., 54 (5) (2006), 1762-1770.
El-Shafey, M. H., & Mansour, M. M. (2006). Application of a new frequency estimation technique to power systems. IEEE Trans. Power Delivery 21(3), 1045-1053.
Trapero, J. R., Sira-Ramirez, H., & Batlle, V. F. (2007). An algebraic frequency estimator for a biased and noisy sinusoidal signal. Signal Processing, 87(6), 1188-1201.
Tan, L. & Wang, L. (2011). Oversampling Technique for Obtaining Higher Order Derivative of Low-Frequency Signals. IEEE Trans. Instrum. and Meas.,60(11), 3677-3684.
Kay,S. (1988). Modern Spectral estimation: Theory and Applications. Englewood Cliffs, NJ: Prentice-Hall.
Stoica, P., Li, H. & Lim, J. (2000). Amplitude estimation of sinusoidal signals: Survey, new results, and an application. IEEE Trans. Signal Process., 48(2), 338-352.
Belega, D., Dallet, D., & Slepicka, D. (2010). Accurate Amplitude Estimation of Harmonic Components of Incoherently Sampled Signals in the Frequency Domain. IEEE Trans. on Instr. and Meas., 59(5), 1158-1166.
Pantazis, Y., Roces, O. & Stylianou, Y. (2010). Iterative Estimation of sinusoidal Signal Parameters. IEEE Signal Process. Lett., 17(5), 461-464.
Petrovic, P. & Damljanovic, N. (2017). New Procedure for Harmonics Estimation Based on Hilbert Transformation. Electrical Engineering, 99(1), 313-323.
Petrovic, P. B. & Damljanovic, N. (2018). Dynamic phasors estimation based on Taylor-Fourier expansion and Gram matrix representation. Mathematical Problems in engineering, Volume 2018, Article ID 7613814, 17 pages, https://doi.org/10.1155/2018/7613814.
Tse, N.C.F. & Lai, L. L. (2007). Wavelet-Based Algorithm for Signal Analysis”, EURASIP Journal on Advances in Signal Processing. Article ID 38916, 10 pages.
Agrež, D. (2005). Improving phase estimation with leakage minimisation. IEEE Trans. on Instr. and Meas., 54(4), 1347-1353.
Petrovic, P. & Stevanovic, M. (2011). Algorithm for Fourier Coefficient Estimation. IET Signal Processing, 5(2), 138-149.
Petrovic, P. (2015). New procedure for estimation of amplitude and phase of analog multiharmonic signal based on the differential irregular samples. Journal of Signal Processing Systems, 81(1), 11-27.
Kuseljevic, M. D. (2010). Simultaneous Frequency and Harmonic Magnitude Estimation Using Decoupled Modules and Multirate Sampling. IEEE Trans. Instrum. Meas., 59(4), 954-962.
Petrovic, P. (2012b). Modified formula for calculation of active power and RMS value of band-limited AC signals. IET Science Measurement&Technoogy, 6(6), 510-518.
Petrovic, P. (2012c). New method and circuit for processing of band-limited periodic signals. Signal Image and Video Processing, 6(1), 109-123.