UKLJUČIVANJE NEKSUS EKO OZNAKA U STRATEGIJE ZA SMANJENJE OTPADA HRANE NA NIVOU DOMAĆINSTVA – EKOLOŠKE PERSPEKTIVE IZ PROCENE ŽIVOTNOG CIKLUSA
UNAPREĐENJE ODRŽIVOSTI KROZ EKOOZNAČAVANJE: PROCENA UTICAJA NA ŽIVOTNU SREDINU I EKONOMSKE UTICAJE U SMANJENJU OTPADA OD HRANE POMOĆU JRC FW KALKULATORA
Sažetak
This study provides a comprehensive evaluation of the economic and environmental ramifications of food waste reduction through the implementation of Smart NEXUS Ecolabels. Employing the JRC Food Waste Prevention Calculator, the analysis centers on a medium-case scenario wherein household food waste is curtailed by 20%. The results reveal that mitigating food waste at this scale yields substantial benefits, with each ton of food waste prevented equating to the conservation of approximately 78 meals, reduction of 323 kg CO₂ equivalent emissions and an estimated cost savings of 133 euros in production and waste management expenditures. Extrapolating these findings to the EU’s aggregate annual food waste, the potential large-scale impact is profound, encompassing 4.6 billion meals saved, 19.1 million metric tons of CO₂ equivalent emissions mitigated, and an estimated economic benefit of 7.85 billion euros. The environmental impact assessment, conducted across 16 midpoint categories, underscores the pivotal role of targeted food waste prevention strategies in curbing pollution, conserving natural resources, and bolstering food security. These findings substantiate the transformative potential of Smart NEXUS Ecolabels in facilitating systemic reform, reinforcing the necessity of embedding food waste reduction measures within broader sustainability frameworks to enhance resource efficiency at scale.
Reference
Annosi, M. C., Brunetta, F., Bimbo, F., & Kostoula, M. (2021). Digitalization within food supply chains to prevent food waste. Drivers, barriers and collaboration practices. Industrial Marketing Management, 93, 208–220. https://doi.org/10.1016/j.indmarman.2021.01.005
Antle, J. M., & Valdivia, R. O. (2020). Trade-off analysis of agri-food systems for sustainable research and development. Q Open, 1(1). https://doi.org/10.1093/qopen/qoaa005
Attiq, S., Habib, M. D., Kaur, P., Hasni, M. J. S., & Dhir, A. (2021). Drivers of food waste reduction behavior in the household context. Food Quality and Preference, 94, 104300. https://doi.org/10.1016/j.foodqual.2021.104300
Barrera, E. L., & Hertel, T. (2020). Global food waste across the income spectrum: Implications for food prices, production and resource use. Food Policy, 98, 101874. https://doi.org/10.1016/j.foodpol.2020.101874
Bryant, C. J. (2022). Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Foods, 6, 100174. https://doi.org/10.1016/j.fufo.2022.100174
Cattaneo, A., Federighi, G., & Vaz, S. (2020). The environmental impact of reducing food loss and waste: A critical assess-ment. Food Policy, 98, 101890. https://doi.org/10.1016/j.foodpol.2020.101890
Cattaneo, A., Sánchez, M. V., Torero, M., & Vos, R. (2020). Reducing food loss and waste: Five challenges for policy and re-search. Food Policy, 98, 101974. https://doi.org/10.1016/j.foodpol.2020.101974
Cheng, M., McCarl, B., & Fei, C. (2022). Climate Change and Livestock Production: A literature review. Atmosphere, 13(1), 140. https://doi.org/10.3390/atmos13010140
Chung, M. M. S., Bao, Y., Zhang, B. Y., Le, T. M., & Huang, J. (2021). Life Cycle Assessment on Environmental Sustainability of Food Processing. Annual Review of Food Science and Technology, 13(1), 217–237. https://doi.org/10.1146/annurev-food-062420-014630
Ciccullo, F., Cagliano, R., Bartezzaghi, G., & Perego, A. (2020). Implementing the circular economy paradigm in the agri-food supply chain: The role of food waste prevention technologies. Resources Conservation and Recycling, 164, 105114. https://doi.org/10.1016/j.resconrec.2020.105114
Clare, G., Diprose, G., Lee, L., Bremer, P., Skeaff, S., & Mirosa, M. (2023). Measuring the impact of food rescue: A social re-turn on investment analysis. Food Policy, 117, 102454. https://doi.org/10.1016/j.foodpol.2023.102454
Correa-Cano, M., Salmoral, G., Rey, D., Knox, J., Graves, A., Melo, O., Foster, W., Naranjo, L., Zegarra, E., Johnson, C., Viteri-Salazar, O., & Yan, X. (2022). A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development. Renewable and Sustainable Energy Reviews, 159, 112182. https://doi.org/10.1016/j.rser.2022.112182
Crenna, E., Sinkko, T., & Sala, S. (2019). Biodiversity impacts due to food consumption in Europe. Journal of Cleaner Produc-tion, 227, 378–391. https://doi.org/10.1016/j.jclepro.2019.04.054
Da Costa, T. P., Gillespie, J., Pelc, K., Adefisan, A., Adefisan, M., Ramanathan, R., & Murphy, F. (2022). Life cycle Assess-ment Tool for food Supply Chain Environmental Evaluation. Sustainability, 15(1), 718. https://doi.org/10.3390/su15010718
Damiani, M., Pastorello, T., Carlesso, A., Tesser, S., & Semenzin, E. (2021). Quantifying environmental implications of surplus food redistribution to reduce food waste. Journal of Cleaner Production, 289, 125813. https://doi.org/10.1016/j.jclepro.2021.125813
De Laurentiis, V., Caldeira, C., & Sala, S. (2020). No time to waste: assessing the performance of food waste prevention ac-tions. Resources Conservation and Recycling, 161, 104946. https://doi.org/10.1016/j.resconrec.2020.104946
De Laurentiis, V., Garcia Herrero, L., Foschi, J. and Sala, S., Food Waste Prevention Calculator, European Commission, Is-pra, 2023, JRC134816. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC134816
De Menna, F., Dietershagen, J., Loubiere, M., & Vittuari, M. (2018). Life cycle costing of food waste: A review of methodologi-cal approaches. Waste Management, 73, 1–13. https://doi.org/10.1016/j.wasman.2017.12.032
Detzel, A., Krüger, M., Busch, M., Blanco‐Gutiérrez, I., Varela, C., Manners, R., Bez, J., & Zannini, E. (2021). Life cycle as-sessment of animal‐based foods and plant‐based protein‐rich alternatives: an environmental perspective. Journal of the Science of Food and Agriculture, 102(12), 5098–5110. https://doi.org/10.1002/jsfa.11417
EC-JRC, 2019. Environmental Footprint reference package 3.0 (EF 3.0). (Accessed January 2020). Available at: https://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml
Elgalb, A., & Gerges, M. (2024). Optimizing Supply Chain Logistics with Big Data and AI: Applications for Reducing Food Waste. Journal of Current Science and Research Review, 2(02), 29-39. Available at: http://jcsrr.org/index.php/jcsrr/article/view/68
Engelseth, P., Molka-Danielsen, J., & White, B. E. (2018). On data and connectivity in complete supply chains. Business Pro-cess Management Journal, 25(5), 1145–1163. https://doi.org/10.1108/bpmj-09-2017-0251
Espinosa-Marrón, A., Adams, K., Sinno, L., Cantu-Aldana, A., Tamez, M., Marrero, A., Bhupathiraju, S. N., & Mattei, J. (2022). Environmental impact of Animal-Based food production and the feasibility of a shift toward sustainable Plant-Based diets in the United States. Frontiers in Sustainability, 3. https://doi.org/10.3389/frsus.2022.841106
European Commission. Commission Staff Working Document Impact Assessment Report Accompanying the document Directive of the European Parliament and of the Council amending Directive 2008/98/EC on waste (2023). Available at: https://shorturl.at/e7RWR
Eurostat, (2022). Food waste and food waste prevention by NACE Rev. 2 activity - tones of fresh mass. https://doi.org/10.2908/ENV_WASFW
FAO. (2021). Food Systems Account for More Than One Third of Global Greenhouse Gas Emissions. Available at: https://www.fao.org/newsroom/detail/Food-systems-account-for-more-than-one-third-of-global-greenhouse-gas-emissions/en
Flanagan, A., & Priyadarshini, A. (2021). A study of consumer behaviour towards food-waste in Ireland: Attitudes, quantities and global warming potentials. Journal of Environmental Management, 284, 112046. https://doi.org/10.1016/j.jenvman.2021.112046
Ganeson, K., Mouriya, G. K., Bhubalan, K., Razifah, M. R., Jasmine, R., Sowmiya, S., Amirul, A. A., Vigneswari, S., & Rama-krishna, S. (2023). Smart packaging − A pragmatic solution to approach sustainable food waste management. Food Packag-ing and Shelf Life, 36, 101044. https://doi.org/10.1016/j.fpsl.2023.101044
Grizzetti, B., Vigiak, O., Udias, A., Aloe, A., Zanni, M., Bouraoui, F., Pistocchi, A., Dorati, C., Friedland, R., De Roo, A., Sanz, C. B., Leip, A., & Bielza, M. (2021). How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environmental Change, 69, 102281. https://doi.org/10.1016/j.gloenvcha.2021.102281
Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2018). Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 69–76. https://doi.org/10.1093/af/vfy034
Hassoun, A., Boukid, F., Ozogul, F., Aït-Kaddour, A., Soriano, J. M., Lorenzo, J. M., Perestrelo, R., Galanakis, C. M., Bono, G., Bouyahya, A., Bhat, Z., Smaoui, S., Jambrak, A. R., & Câmara, J. S. (2023). Creating new opportunities for sustainable food packaging through dimensions of industry 4.0: New insights into the food waste perspective. Trends in Food Science & Technology, 142, 104238. https://doi.org/10.1016/j.tifs.2023.104238
Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T., & Walsworth, T. E. (2018). The environmental cost of animal source foods. Frontiers in Ecology and the Environment, 16(6), 329–335. https://doi.org/10.1002/fee.1822
ISO. (2006). ISO 14040: 2006. Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization. Geneva. Available at: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en
ISO. (2006). ISO 14044: 2006. Environmental management—Life cycle assessment—Requirements and guidelines. Interna-tional Organization for Standardization. Geneva. Available at: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en
Iwko, J., & Wróblewski, R. (2019). Experimental study on energy consumption in the plasticizing unit of the injection molding machine. Innovations Technology Governance Globalization, 7(4), 155–159. https://stumejournals.com/journals/innovations/2019/4/155.full.pdf
Jagtap, S., Bhatt, C., Thik, J., & Rahimifard, S. (2019). Monitoring potato waste in food manufacturing using image pro-cessing and internet of things approach. Sustainability, 11(11), 3173. https://doi.org/10.3390/su11113173
Kitanovski, V. D., Dragoev, S. G., Nikolov, H. N., Vlahova-Vangelova, D. B., & Balev, D. K. (2023). Nutritional Quality and Overall Acceptability Optimization of Ultra-Fast Air-Superchilled Golden Rainbow Trout (Oncorhynchus mykiss, Stevanovski) Using the Response Surface Methodology. Applied Sciences, 13(17), 9504. https://doi.org/10.3390/app13179504
Kopanaki, E., Stroumpoulis, A., & Oikonomou, M. (2021). The impact of blockchain technology on food waste management in the hospitality industry. Proceedings of the ENTRENOVA - Enterprise Research Innovation Conference, 7(1), 428–437. https://doi.org/10.54820/cqrj6465
Lehn, F., Goossens, Y., & Schmidt, T. (2023). Economic and environmental assessment of food waste reduction measures – Trialing a time-temperature indicator on salmon in HelloFresh meal boxes. Journal of Cleaner Production, 392, 136183. https://doi.org/10.1016/j.jclepro.2023.136183
Lovarelli, D., & Bacenetti, J. (2019). Exhaust gases emissions from agricultural tractors: State of the art and future perspectives for machinery operators. Biosystems Engineering, 186, 204–213. https://doi.org/10.1016/j.biosystemseng.2019.07.011
Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15. https://doi.org/10.1016/j.envint.2014.12.010
Mantoam, E. J., Angnes, G., Mekonnen, M. M., & Romanelli, T. L. (2020). Energy, carbon and water footprints on agricultur-al machinery. Biosystems Engineering, 198, 304–322. https://doi.org/10.1016/j.biosystemseng.2020.08.019
Marczak, H. (2022). Energy inputs on the production of plastic products. Journal of Ecological Engineering, 23(9), 146–156. https://doi.org/10.12911/22998993/151815
Martin-Rios, C., Hofmann, A., & Mackenzie, N. (2020). Sustainability-Oriented innovations in food waste management tech-nology. Sustainability, 13(1), 210. https://doi.org/10.3390/su13010210
Mertens, E., Kuijsten, A., Van Zanten, H. H., Kaptijn, G., Dofková, M., Mistura, L., D’Addezio, L., Turrini, A., Dubuisson, C., Havard, S., Trolle, E., Geleijnse, J. M., & Van ’t Veer, P. (2019). Dietary choices and environmental impact in four European countries. Journal of Cleaner Production, 237, 117827. https://doi.org/10.1016/j.jclepro.2019.117827
Mesiranta, N., Närvänen, E., & Mattila, M. (2021). Framings of Food Waste: How food system stakeholders are responsibil-ized in public policy debate. Journal of Public Policy & Marketing, 41(2), 144–161. https://doi.org/10.1177/07439156211005722
Notarnicola, B., Tassielli, G., Renzulli, P. A., Castellani, V., & Sala, S. (2016). Environmental impacts of food consumption in Europe. Journal of Cleaner Production, 140, 753–765. https://doi.org/10.1016/j.jclepro.2016.06.080
Onyeaka, H., Tamasiga, P., Nwauzoma, U. M., Miri, T., Juliet, U. C., Nwaiwu, O., & Akinsemolu, A. A. (2023). Using artifi-cial intelligence to tackle food waste and enhance the circular economy: Maximising resource Efficiency and Minimising Envi-ronmental Impact: A review. Sustainability, 15(13), 10482. https://doi.org/10.3390/su151310482
Pandian, A. T., Chaturvedi, S., & Chakraborty, S. (2020). Applications of enzymatic time–temperature indicator (TTI) devices in quality monitoring and shelf-life estimation of food products during storage. Journal of Food Measurement & Characteriza-tion, 15(2), 1523–1540. https://doi.org/10.1007/s11694-020-00730-8
Patinha Caldeira, C., De Laurentiis, V. and Sala, S., Assessment of food waste prevention actions, EUR 29901 EN, Publica-tions Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-10190-1, doi:10.2760/101025, JRC118276.
Perignon, M., Vieux, F., Soler, L., Masset, G., & Darmon, N. (2016). Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutrition Reviews, 75(1), 2–17. https://doi.org/10.1093/nutrit/nuw043
Qin, Y., & Horvath, A. (2021). What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss? Resources Conservation and Recycling, 176, 105945. https://doi.org/10.1016/j.resconrec.2021.105945
Qu, S., & Ma, H. (2022). The impact of carbon policy on carbon emissions in various industrial sectors based on a hybrid ap-proach. Environment Development and Sustainability, 25(12), 14437–14451. https://doi.org/10.1007/s10668-022-02673-0
Ribeiro, I., Sobral, P., Peças, P., & Henriques, E. (2017). A sustainable business model to fight food waste. Journal of Cleaner Production, 177, 262–275. https://doi.org/10.1016/j.jclepro.2017.12.200
Sarkar, B., Debnath, A., Chiu, A. S., & Ahmed, W. (2022). Circular economy-driven two-stage supply chain management for nullifying waste. Journal of Cleaner Production, 339, 130513. https://doi.org/10.1016/j.jclepro.2022.130513
Sasaki, Y., Orikasa, T., Nakamura, N., Hayashi, K., Yasaka, Y., Makino, N., Shobatake, K., Koide, S., & Shiina, T. (2021). Life cycle assessment of peach transportation considering trade-off between food loss and environmental impact. The International Journal of Life Cycle Assessment, 26(4), 822–837. https://doi.org/10.1007/s11367-020-01832-7
Scardigno, A. (2019). New solutions to reduce water and energy consumption in crop production: A water–energy–food nexus perspective. Current Opinion in Environmental Science & Health, 13, 11–15. https://doi.org/10.1016/j.coesh.2019.09.007
Schanes, K., Dobernig, K., & Gözet, B. (2018). Food waste matters - A systematic review of household food waste practices and their policy implications. Journal of Cleaner Production, 182, 978–991. https://doi.org/10.1016/j.jclepro.2018.02.030
Scoones, I. (2022). Livestock, methane, and climate change: The politics of global assessments. Wiley Interdisciplinary Reviews Climate Change, 14(1). https://doi.org/10.1002/wcc.790
Simões, J., Carvalho, A., & De Matos, M. G. (2022). How to influence consumer food waste behavior with interventions? A sys-tematic literature review. Journal of Cleaner Production, 373, 133866. https://doi.org/10.1016/j.jclepro.2022.133866
Sinkko, T., Caldeira, C., Corrado, S., & Sala, S. (2019). Food consumption and wasted food. In Elsevier eBooks, pp. 315–346. https://doi.org/10.1016/b978-0-12-815357-4.00011-0
Skawińska, E., & Zalewski, R. I. (2022). Combining the Water–Energy–Food and Food Waste–Food Loss–Food Security nex-uses to reduce resource waste. Energies, 15(16), 5866. https://doi.org/10.3390/en15165866
Slorach, P. C., Jeswani, H. K., Cuéllar-Franca, R., & Azapagic, A. (2019). Environmental and economic implications of re-covering resources from food waste in a circular economy. The Science of the Total Environment, 693, 133516. https://doi.org/10.1016/j.scitotenv.2019.07.322
Striebig, B., Smitts, E., & Morton, S. (2019). Impact of Transportation on Carbon Dioxide Emissions from Locally vs. Non-locally Sourced Food. Emerging Science Journal, 3(4), 222–234. https://doi.org/10.28991/esj-2019-01184
Szymkowiak, A., Antoniak, M. A., & Maślana, N. (2024). Changing consumer attitudes towards suboptimal foods: The effect of zero waste labeling. Food Quality and Preference, 114, 105095. https://doi.org/10.1016/j.foodqual.2023.105095
Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T. S., & Lam, H. Y. (2019). Blockchain-Driven IoT for food traceability with an integrated consensus mechanism. IEEE Access, 7, 129000–129017. https://doi.org/10.1109/access.2019.2940227
Uhlig, E., Sadzik, A., Strenger, M., Schneider, A., & Schmid, M. (2025). Food wastage along the global food supply chain and the impact of food packaging. Journal of Consumer Protection and Food Safety. https://doi.org/10.1007/s00003-024-01539-z
United Nations Environment Programme (2024). Food Waste Index Report 2024. Nairobi. ISBN: 978-92-807-4139-1, Availa-ble at: https://www.unep.org/resources/publication/food-waste-index-report-2024
Urbano, B., Barquero, M., & González-Andrés, F. (2022). The environmental impact of fresh tomatoes consumed in cities: A comparative LCA of long-distance transportation and local production. Scientia Horticulturae, 301, 111126. https://doi.org/10.1016/j.scienta.2022.111126
Varese, E., Cesarani, M. C., & Wojnarowska, M. (2022). Consumers’ perception of suboptimal food: strategies to reduce food waste. British Food Journal, 125(1), 361–378. https://doi.org/10.1108/bfj-07-2021-0809
Wang, Y., Yuan, Z., & Tang, Y. (2021). Enhancing food security and environmental sustainability: A critical review of food loss and waste management. Resources Environment and Sustainability, 4, 100023. https://doi.org/10.1016/j.resenv.2021.100023
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
Xu, X., Sharma, P., Shu, S., Lin, T., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N., & Jain, A. K. (2021). Global green-house gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2(9), 724–732. https://doi.org/10.1038/s43016-021-00358-x
Xue, X., & Landis, A. E. (2010). Eutrophication potential of food consumption patterns. Environmental Science & Technology, 44(16), 6450–6456. https://doi.org/10.1021/es9034478
Yan, B., Yan, C., Ke, C., & Tan, X. (2016). Information sharing in supply chain of agricultural products based on the Internet of Things. Industrial Management & Data Systems, 116(7), 1397–1416. https://doi.org/10.1108/imds-12-2015-0512
Zeng, T., Durif, F., & Robinot, E. (2020). Can eco-design packaging reduce consumer food waste? an experimental study. Technological Forecasting and Social Change, 162, 120342. https://doi.org/10.1016/j.techfore.2020.120342
Zhu, J., Luo, Z., Sun, T., Li, W., Zhou, W., Wang, X., Fei, X., Tong, H., & Yin, K. (2023). Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nature Food, 4(3), 247–256. https://doi.org/10.1038/s43016-023-00710-3