BRAIN-DERIVED OLIGOPEPTIDES SHOW NEUROPROTECTIVE PROPERTIES IN RATS WITH PARKINSON-LIKE SYNDROME
Abstract
Objective. Our research was designed to study the neuroprotective action of the PC-2 peptide complex in rats with experimental Parkinson's disease.
Methods. To evaluate the efficacy of the PC-2 peptide complex in rats with experimental Parkinson’s disease, levels of 8-isoprostane, noradrenaline, dopamine acetylcholine, glutamate, GABA, aspartate, glycine, as well as the activity of isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase were determined in homogenates of the frontal lobe of the brain.
Results. Treatment with the PC-2 peptide complex normalized concentrations of noradrenaline and acetylcholine, increased concentrations of dopamine (however, they did not reach the level in the rats from the control group) on the 20th day from the beginning of treatment. Levels of excitatory amino acids in rats with experimental Parkinson’s disease increased, while concentrations of inhibitory amino acids in homogenates of the frontal lobe decreased. The PC-2 protein complex normalized the content of the studied amino acids on the 20th day of treatment. In addition, the content of oxidative stress markers increased in homogenates of the frontal lobe of the brain in rats with Parkinson’s disease, which resulted in a decrease in the activity of mitochondrial enzymes and energy formation against the background of high glutamate levels. Normalization of the parameters of energy metabolism was achieved on the 20th day after the surgery.
Conclusion. The PC-2 peptide complex regulates the level of biogenic amines and neurotransmitter amino acids and, as a result, affects the energy metabolism in experimental Parkinson’s disease.
References
Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology 2016; 46(4): 292-300. doi: 10.1159/000445751.
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2014; 29(13): 1583-90. doi: 10.1002/mds.25945.
Hu Q, Wang G. Mitochondrial dysfunction in Parkinson’s disease. Translational Neurodegeneration 2016; 5: 14. doi:10.1186/s40035-016-0060-6.
Ross JM, Olson L, Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Tegeder I, ed. International Journal of Molecular Sciences. 2015; 16(8): 19458-19476. doi:10.3390/ijms160819458.
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA. What causes the death of dopaminergic neurons in Parkinson's disease? Prog Brain Res. 2010; 183: 59-77. doi: 10.1016/S0079-6123(10)83004-3.
Dias V, Junn E, Mouradian MM. The Role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s disease 2013; 3(4): 461-491. doi:10.3233/JPD-130230.
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research 2013; 8(21): 2003-2014. doi:10.3969/j.issn.1673-5374.2013.21.009.
Klein C, Westenberger A. Genetics of Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine 2012; 2(1): a008888. doi:10.1101/cshperspect.a008888.
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports 2016; 6: 24475. doi:10.1038/srep24475.
Konno T, Siuda J, Wszolek ZK. Genetics of Parkinson's disease: a review of SNCA and LRRK2. Wiad Lek. 2016; 69(3 Pt 1): 328-32.
Lin MK, Farrer MJ. Genetics and genomics of Parkinson’s disease. Genome Medicine 2014; 6(6): 48. doi:10.1186/gm566.
Chai C, Lim K-L. Genetic insights into sporadic Parkinson’s disease pathogenesis. Current Genomics 2013; 14(8): 486-501. doi:10.2174/1389202914666131210195808.
Oliveira LM, Tuppy M, Moreira TS, Takakura AC. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model. Exp Neurol. 2017; 293: 172-180. doi: 10.1016/j.expneurol.2017.04.006.
Qamhawi Z, Towey D, Shah B, et al.Clinical correlates of raphe serotonergic dysfunction in early Parkinson's disease. Brain. 2015; 138(Pt 10): 2964-73. doi: 10.1093/brain/awv215.
Marella M, Seo BB, Yagi T, Matsuno-Yagi A. Parkinson’s disease and mitochondrial complex I: a perspective on the Ndi1 therapy. Journal of bioenergetics and biomembranes 2009; 41(6): 493-497. doi:10.1007/s10863-009-9249-z.
Kumar H, Lim H-W, More SV, et al. the role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. International Journal of Molecular Sciences 2012; 13(8): 10478-10504. doi:10.3390/ijms130810478.
Prentice H, Modi JP, Wu J-Y. Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxidative Medicine and Cellular Longevity 2015; 2015:964518. doi:10.1155/2015/964518.
Kim JH, Chang WS, Jung HH, Chang JW. Effect of subthalamic deep brain stimulation on levodopa-induced dyskinesia in Parkinson’s disease. Yonsei Medical Journal 2015; 56(5): 1316-1321. doi:10.3349/ymj.2015.56.5.1316.
Ma Y, Peng S, Dhawan V, Eidelberg D. Dopamine cell transplantation in Parkinson’s disease: challenge and perspective. British Medical Bulletin 2011; 100(1): 173-189. doi:10.1093/bmb/ldr040.
Chun SY, Soker S, Jang Y-J, Kwon TG, Yoo ES. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro. Journal of Korean Medical Science 2016; 31(2): 171-177.doi:10.3346/jkms.2016.31.2.171.
Mercanti G, Bazzu G, Giusti PA. 6-Hydroxydopamine in vivo model of Parkinson's disease. Methods Mol Biol. 2012; 846: 355-64. doi: 10.1007/978-1-61779-536-7_30.
Fifkova E., G. Marshall. Stereotaxic atlas of cat, rabbit and rat brain. Electrophysiological research methods (Russian translation). Foreign Lit., 1982 [in Russian].
Atack C, Magnusson T. A procedure for the isolation of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from the same tissue sample using a single column of strongly acidic cation exchange resin. Acta Pharmacol Toxicol (Copenh). 1978; 42(1): 35-57.
Drozdov NS, Materanskaya NP. Guide for biological chemistry. Moscow: Higher school, 1998 [in Russian].
Drozdov VN, Trubycina IE, Lygkova AE, Lazebnik LB. The way of acetylcholine determination. RU Patent 2256920, 2011 [in Russian].
Prohorova MI. Methods of biochemical investigation (lipid and energy metabolism. L.: Leningrad University, 1982 [in Russian].
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Frontiers in Synaptic Neuroscience 2014; 6: 22. doi:10.3389/fnsyn.2014.00022.
Davie CA. A review of Parkinson's disease. Br Med Bull. 2008; 86: 109-27. doi: 10.1093/bmb/ldn013.
Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Progress in neurobiology 2013; 0: 17-32. doi:10.1016/j.pneurobio.2013.04.004.
Mattson MP. Pathogenesis of Neurodegenerative Disorders. Humana Press Contemporary Neuroscience. National Institute of Aging, Baltimore. New Jersey, 2011.
Bohnen N, Albin RL. The cholinergic system and Parkinson disease. Behavioural Brain Research 2011; 221(2): 564-573. doi:10.1016/j.bbr.2009.12.048.
Anisimov SV. Cell therapy of Parkinson’s disease. Transplantation of embryonic and adult tissue. Advances in Gerontogy 2008; 4:575-592 [in Russian].
Naila A, Flint S, Fletcher G, Bremer P, Meerdink G. Control of biogenic amines in food—existing and emerging approaches. Journal of Food Science 2010; 75(7): R139-R150. doi:10.1111/j.1750-3841.2010.01774.x.
Chao YX, He BP, Tay SS. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease. J Neuroimmunol. 2009; 216(1-2): 39-50. doi: 10.1016/j.jneuroim.2009.09.003.