ASSESSMENT OF THE INFLUENCE OF EXPANDED HEMODIALYSIS ON THE RATE OF REMOVAL OF MIDDLE MOLECULAR WEIGHT UREMIC TOXINS

  • Dejan Petrović Fakultet medicinskih nauka Kragujevac
Keywords: extended hemodialysis.MCO dialysis membrane.uremic toxins.β2-microglobulin.albumin.

Abstract


INTRODUCTION. Extended MCO hemodialysis ("Medium Cut-Off") is a method of treatment to replace kidney function, which effectively removes uremic toxins of middle molecular weight from the blood of patients with end-stage chronic kidney disease. AIM. The aim of this study was to examine the effect of expanded hemodialysis on the degree of β2-microglobulin removal. METHOD. Sixteen patients treated with extended MCO hemodialysis were examined. The main parameter for assessing the efficiency of removal of uremic toxins of middle molecular weight is the concentration of β2-microglobulin in the serum before and after a single session of extended MCO hemodialysis. The following were used for statistical analysis: Kolmogorov-Smirnov test, Student's T test for bound samples and Wilcoxon test. RESULTS. Extended MCO hemodialysis effectively removes uremic toxins of middle molecular weight. The reduction index of β2-microglobulin during a single session of extended MCO hemodialysis is 70.60 ± 5.88%. The average loss of albumin during a single session of extended MCO hemodialysis is 1.88 ± 1.02 g/4h, and the index of albumin reduction is 4.94 ± 2.49%. CONCLUSION. Extended MCO hemodialysis effectively removes β2-microglobulin. The β2-microglobulin reduction index is ~ 71% and the albumin loss is less than 4.0 g/4h. This dialysis modality prevents the development of amyloidosis, atherosclerosis and atherosclerotic cardiovascular diseases in the population of patients treated with regular hemodialysis.

References

1. Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant 2018; 33(1): 28-34. Doi: 10.1093/ndt/gfy174.
2. Ahmadmehrabi S, Tang WHW. Hemodialysis-induced Cardiovascular Disease. Semin Dial 2018; 31(3): 258-67. Doi: 10.1111/sdi.12694.
3. Wolley MJ, Hutchison CA. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant 2018; 33(Suppl 3): 6-11. Doi: 10.1093/ndt/gfy179.
4. Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins 2020; 12(3): 161. Doi: 10.3390/toxins12030161.
5. Lekawanvijit S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins 2018; 10(9): 352. Doi: 10.3390/toxins10090352.
6. Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins 2018; 10(7): 287. Doi: 10.3390/toxins10070287.
7. Mair RD. Sirich TL, Meyer TW. Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins 2018; 10(6): 226. Doi: 10.3390/toxins10060226.
8. Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins 2018; 10(5): 202. Doi: 10.3390/toxins10050202.
9. Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, et al. Indoxyl Sulfate, a Uremic Toxin, Stimulates Reactive Oxygen Species Production and Erythrocyte Cell Death Supposedly by an Organic Anion Transporter 2 (OAT2) and NADPH Oxidase Activity-Dependent Pathways. Toxins 2018; 10(7): 280. Doi: 10.3390/toxins10070280.
10. Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZAM, Mafra D, et al. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020; 12(10): 3147. Doi: 10.3390/nu12103147.
11. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol 2018; 14(6): 394-410. Doi: 10.1038/s41581-018-0002-x.
12. Haroon S, Davenport A. Choosing a dialyzer: What clinicians need to know. Hemodialysis Int 2018; 22(Suppl 2): 65-74. Doi: 10.1111/hdi.12702.
13. Wolley M, Jardine M, Hutchison CA. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clin J Am Soc Nephrol 2018; 13(5): 805-14. Doi: 10.2215/CJN.10110917.
14. Masacane I, Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant 2018; 33(Suppl 3): 12-21. Doi: 10.1093/ndt/gfy224.
15. Tattersal JE, Ward RA. Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant 2013; 28(3): 542-50. Doi: 10.1093/ndt/gfs530.
16. Chapdelaine I, De Roij van Zuijewijn CLM, Mostovaya IM, Levesque R, Davenport A, Blankestijn PJ, et al. Optimization of the convection volume in online post-dilution haemodiafiltration: practical and technical issues. Clin Kidney J 2015; 8(2): 191-8. Doi: 10.1093/ckj/sfv003.
17. Jaćović S, Jovanović M, Hamzagić N, Pavlović R, Petrović D. Erythropoietin Resistance in Hemodialysis Patients. Acta Fac Med Naiss 2019; 36(1): 5-14. Doi: 10.2478/afmnai-2019-0001.
18. Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative stress in Hemodialysis Patients: A Review of the Literature. Oxidative Med Cell Long 2017; Doi:10.1155/2017/3081856.
19. Antić S, Draginić N, Nikolić T, Jeremić N, Petrović D. Oxidative stress in hemodialysis patients: pathophysiological mechanisms, clinical consequence and basic principles of treatment. Ser J Exp Clin Res 2019; Doi: 10.2478/sjecr-2019-0008.
20. Antić S, Draginić N, Jovanović M, Nikolić T, Jeremić N, Živković V, Srejović I, Petrović D, Jakovljević V. The relation between oxidative stress and carotid artery atherosclerosis in hemodialysis patients. Ser J Exp Clin Res 2019; Doi: 10.2478/sjecr-2019-0052.
21. Liakopoulos V, Roumeliotis S, Bozikas A, et al. (2019). Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? Oxidative Med Cell Long. 2019: 9109473. Doi: 10.1155/2019/9109473.
22. Antić S, Draginić N, Pilčević D, Živković V, Srejović I, JeremićN, Petrović D, Jakovljević V. The influence of vitamin E coated dialysis membrane on oxidative stress during the single session of on-line hemodiafiltration. Vojnosanit Pregl 2019; Doi: 10.2298/VSP190730097A.
23. De Roij van Zuijdewijn CLM, Chapdelaine I, Nube MJ, Blankestijn PJ, Bots ML, Konings CJAM, et al. Achieving high concentration volumes in postdilution online hemodiafiltration: a prospective multicenter study. Clin Kidney J 2017; 10(6): 804-12. Doi: 10.1093/ckj/sfw140.
24. Marcelli D, Scholz C, Ponce P, Sousa T, Kopperschmidt P, Grassmann A, et al. High-Volume Postdilution Hemodiafiltration Is a Feasible Option in Rutine Clinical Practice. Artif Organs 2015; 39(2): 142-9. Doi: 10.1111/aor.12345.
25. Masacane I, Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant 2018; 33(Suppl 3): 12-21. Doi: 10.1093/ndt/gfy224.
26. Mostovaya IM, Grooteman MPC, Basile C, Davenport A, De Roij van Zuijdewijn CLM, Wanner C, Nube MJ, Blankestijn PJ, on behalf of the EuDial group. High convection volume on online post-dilution haemodiafiltration: Relevance, safety and costs. Clin Kidney J 2015; 8(4): 368-73. Doi: 10.1093/ckj/sfv040.
27. Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int 2015; 88(5): 1108-16. Doi: 10.1038/ki.2015.139.
28. Lorenzin A, Neri M, Lupi A, Todesco M, Santimaria M, Alghisi A, et al. Quantification of Internal Filtration in Hollow Fiber Hemodialyzers with Medium Cut-Off Membrane. Blood Purif 2018; 46(3): 196-204. Doi: 10.1159/000489993.
29. Ronco C, Marchionna N, Brendolan A, Neri M, Lorenzin A, Rueda AJM. Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant 2018; 33(Suppl 3): 41-7. Doi: 10.1093/ndt/gfy202.
30. Garcia-Prieto A, Vega A, Linares T, Abad S, Macias N, Aragoncillo I, et al. Evaluation of the efficacy of a medium cut-off dialyser and comparison with other high-flux dialysers in konventional haemodialysis and online haemodiafiltration. Clin Kidney J 2018; 11(5): 742-6. Doi: 10.1093/ckj/sfy004.
31. Cozzolino M, Maganoli L, Ciceri P, Conte F, Galassi A. Effects of a medium cut-off (Theranova) dialyser on haemodialysis patients: a prospective, cross-over study. Clin Kidney J 2019; 1-8. DOI: 10.1093/ckj/sfz155.
32. Maduell F, Rodas L, Broseta JJ, Gomez M, Xipell M, Guillen E, et al. Medium Cut-Off Dialyzer versus Eight Hemodiafiltration Dialyzers: Comparison Using a Global Removal Score. Blood Purif 2019; 48(2): 167-74. Doi: 10.1159/000499759.
33. Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZAM, Mafra D, Karupaiah T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020; 12: 3147. Doi: 10.3390/nu12103147.
34. Zickler D, Schindler R, Willy K, Martus P, Pawlak M, Storr M, et al. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial. Plos One 2017; 12(1): e0169024. Doi: 10.1371/journal.pone.0169024.
35. Lim JH, Jeon Y, Yook JM, Choi SY, Jung HY, Choi JY, et al. Medium cut-off dialyzer improves erythropoiesis stimulating agent resistance in a hepcidin-independent manner in maintenance hemodialysis patients: results from a randomized controlled trial. Rep Sci 2020; 10: 16062. Doi: 10.1038/s41598-020-73124-x.
Published
2021/03/10
Section
Professional Paper