COMPARISON OF EFFICIENCY OF MIDDLE MOLECULAR MASS UREMIC TOXIN REMOVAL BETWEEN HIGH-FLUX HEMODIALYSIS AND POSTDILUTION ONLINE HEMODIAFILTRATION
Abstract
INTRODUCTION. Conventional high-flux hemodialysis effectively removes uremic toxins of middle molecular weight of 0.5-15 (20) kDa, while postdilution online hemodiafiltration effectively removes uremic toxins of medium molecular weight in the range of 0.5-60 kDa. AIM. The aim of the study was to compare the efficacy of β2-microglobulin removal from patient serum during a single session of conventional high-flux hemodialysis and postdilution online hemodiafiltration. METHOD. Eighty-five patients treated with conventional high-flux hemodialysis and thirty patients treated with postdilution online hemodiafiltration were examined. The main parameter for assessing the removal efficiency of middle molecular weight uremic toxins was serum β2-microglobulin concentration before and after a single session of conventional high-flux hemodialysis and postdilution online hemodiafiltration. The following were used for statistical analysis: Kolmogorov-Smirnov test, Student's T test and Mann-Whitney U test. RESULTS. In patients treated with postdilution online hemodiafiltration, the average total convective volume was 21.38 ± 2.97 liters per session. The β2-microglobulin reduction index for the FX CorDiax 600 dialysis membrane was 61.76 ± 7.32%, for the FX CorDiax 800 dialysis membrane 74.69 ± 6.51%. The albumin reduction index for the FX CorDiax 600 membrane was 3.48 ± 1.28, for the FX CorDiax 800 dialysis membrane 6.01 ± 2.97%. Between the albumin reduction index, for two different dialysis modalities and two different dialysis membranes, there is a highly statistically significant difference (p < 0.01). CONCLUSION. Postdilution online hemodiafiltration is more efficient in removing β2-microglobulin from patient serum, compared to conventional high-flux hemodialysis. Albumin loss during a single session of high-flux hemodialysis is lower compared to a single session of postdilution online hemodiafiltration. With both dialysis modalities, albumin loss is less than 4.0 g/4h. High-flux hemodialysis effectively prevents the development of dialysis-related amyloidosis, while postdilution online hemodiafiltration effectively prevents not only the development of dialysis-related amyloidosis, but also the development of resistance to erythropoietin and atherosclerotic cardiovascular diseases in the population treated with regular dialysis.
References
2. Ahmadmehrabi S, Tang WHW. Hemodialysis-induced Cardiovascular Disease. Semin Dial 2018; 31(3): 258-67. Doi: 10.1111/sdi.12694.
3. Nenadović M, Nikolić A, Kostović M, Drašković B, Jovanović M, Nikolić T, Petrović D. Assessment of the influence of expanded hemodialysis on the rate of removal of middle molecular weight uremic toxins. Med Čas 2020; 54(3): Doi: 10.5937/mckg54-30496.
4. Wolley MJ, Hutchison CA. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant 2018; 33(Suppl 3): 6-11. Doi: 10.1093/ndt/gfy179.
5. Davenport A. Moving beyond small solute clearance: What evidence is there for more permeable dialyzers and haemodiafiltration? Hemodialysis Int 2018; 22(Suppl 1): 24-8. Doi: 10.1111/hdi.12700.
6. Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins 2020; 12(3): 161. Doi: 10.3390/toxins12030161.
7. Lekawanvijit S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins 2018; 10(9): 352. Doi: 10.3390/toxins10090352.
8. Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins 2018; 10(7): 287. Doi: 10.3390/toxins10070287.
9. Mair RD. Sirich TL, Meyer TW. Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins 2018; 10(6): 226. Doi: 10.3390/toxins10060226.
10. Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins 2018; 10(5): 202. Doi: 10.3390/toxins10050202.
11. Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, et al. Indoxyl Sulfate, a Uremic Toxin, Stimulates Reactive Oxygen Species Production and Erythrocyte Cell Death Supposedly by an Organic Anion Transporter 2 (OAT2) and NADPH Oxidase Activity-Dependent Pathways. Toxins 2018; 10(7): 280. Doi: 10.3390/toxins10070280.
12. Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZAM, Mafra D, et al. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020; 12(10): 3147. Doi: 10.3390/nu12103147.
13. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol 2018; 14(6): 394-410. Doi: 10.1038/s41581-018-0002-x.
14. Haroon S, Davenport A. Choosing a dialyzer: What clinicians need to know. Hemodialysis Int 2018; 22(Suppl 2): 65-74. Doi: 10.1111/hdi.12702.
15. Tattersal JE, Ward RA. Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant 2013; 28(3): 542-50. Doi: 10.1093/ndt/gfs530.
16. Chapdelaine I, De Roij van Zuijewijn CLM, Mostovaya IM, Levesque R, Davenport A, Blankestijn PJ, et al. Optimization of the convection volume in online post-dilution haemodiafiltration: practical and technical issues. Clin Kidney J 2015; 8(2): 191-8. Doi: 10.1093/ckj/sfv003.
17. Perez-Garcia R, Alcazar R. The dialyser in the year 2017: Much more than a membrane. Nefrologia 2018; 38(1): 4-7. Doi: 10.1016/j.nefroe.2018.01.006.
18. De Roij van Zuijdewijn CLM, Chapdelaine I, Nube MJ, Blankestijn PJ, Bots ML, Konings CJAM, et al. Achieving high concentration volumes in postdilution online hemodiafiltration: a prospective multicenter study. Clin Kidney J 2017; 10(6): 804-12. Doi: 10.1093/ckj/sfw140.
19. Marcelli D, Scholz C, Ponce P, Sousa T, Kopperschmidt P, Grassmann A, et al. High-Volume Postdilution Hemodiafiltration Is a Feasible Option in Rutine Clinical Practice. Artif Organs 2015; 39(2): 142-9. Doi: 10.1111/aor.12345.
20. Wolley M, Jardine M, Hutchison CA. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clin J Am Soc Nephrol 2018; 13(5): 805-14. Doi: 10.2215/CJN.10110917.
21. Masacane I, Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant 2018; 33(Suppl 3): 12-21. Doi: 10.1093/ndt/gfy224.
22. Rysz J, Franczyk B, Lawinski J, Gluba-brzozka A. Oxidative Stres in ESRD Patients on Dialysis and the Risk of Cardiovascular Disease. Antioxidants 2020; 9(11): 1079. Doi: 10.3390/antiox9111079.
23. Jaćović S, Jovanović M, Hamzagić N, Pavlović R, Petrović D. Erythropoietin Resistance in Hemodialysis Patients. Acta Fac Med Naiss 2019; 36(1): 5-14. Doi: 10.2478/afmnai-2019-0001.
24. Antić S, Draginić N, Nikolić T, Jeremić N, Petrović D. Oxidative stress in hemodialysis patients: pathophysiological mechanisms, clinical consequence and basic principles of treatment. Ser J Exp Clin Res 2019; Doi: 10.2478/sjecr-2019-0008.
25. Antić S, Draginić N, Jovanović M, Nikolić T, Jeremić N, Živković V, Srejović I, Petrović D, Jakovljević V. The relation between oxidative stress and carotid artery atherosclerosis in hemodialysis patients. Ser J Exp Clin Res 2019; Doi: 10.2478/sjecr-2019-0052.
26. Antić S, Draginić N, Pilčević D, Živković V, Srejović I, JeremićN, Petrović D, Jakovljević V. The influence of vitamin E coated dialysis membrane on oxidative stress during the single session of on-line hemodiafiltration. Vojnosanit Pregl 2019; Doi: 10.2298/VSP190730097A.
27. Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative stress in Hemodialysis Patients: A Review of the Literature. Oxidative Med Cell Long 2017; Doi:10.1155/2017/3081856.
28. Liakopoulos V, Roumeliotis S, Bozikas A, Eleftheriadis T, Dounousi E. Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? Oxidative Med Cell Long 2019: 9109473. Doi: 10.1155/2019/9109473
29. Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int 2015; 88(5): 1108-16. Doi: 10.1038/ki.2015.139.
30. Mostovaya IM, Grooteman MPC, Basile C, Davenport A, De Roij van Zuijdewijn CLM, Wanner C, Nube MJ, Blankestijn PJ, on behalf of the EuDial group. High convection volume on online post-dilution haemodiafiltration: Relevance, safety and costs. Clin Kidney J 2015; 8(4): 368-73. Doi: 10.1093/ckj/sfv040.
31. Maduell F, Rodas L, Broseta JJ, Gomez M, Xipell M, Guillen E, et al. Medium Cut-Off Dialyzer versus Eight Hemodiafiltration Dialyzers: Comparison Using a Global Removal Score. Blood Purif 2019; 48(2): 167-74. Doi: 10.1159/000499759.
32. Garcia-Prieto A, Vega A, Linares T, Abad S, Macias N, Aragoncillo I, et al. Evaluation of the efficacy of a medium cut-off dialyser and comparison with other high-flux dialysers in conventional haemodialysis and online haemodiafiltration. Clin Kidney J 2018; 11(5): 742-6. Doi: 10.1093/ckj/sfy004.
33. Roumelioti ME, Trietly G, Nolin TD, Ng YH, Xu Z, Alaini A, et al. Beta-2-microglobulin clearance in high-flux dialysis and convective dialysis modalities: a meta-analysis of published studies. Nephrol Dial Transplant 2018; 33(6): 1025-39. Doi: 10.1093/ndt/gfx311.
34. Fournier A, Birmele B, Francois M. Factors Associated with Albumin Loss in Post-Dilution Hemodiafiltration and Nutritional Consequences. Int J Artif Organs 2015; 38(2): 76-82. Doi: 10.5301/ijao.5000389.
35. Van Gelder MK, Abrahams AC, Joles JA, Kaysen GA, Gerritsen KGF. Albumin handling in different hemodialysis modalities. Nephrol Dial Transplant 2018; 33(6): 906-12. Doi: 10.1093/ndt/gfx191.
36. Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 2013; 84(6): 1096-1107. Doi: 10.1038/ki.2013.147.
37. Hanna RM, Ghobry L, Wassef O, Rhee CM, Kalantar-Zadeh K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Caxexia in Patients with Chronic Kidney Disease. Blood Purif 2020; 49(1-2): 202-11. Doi: 10.1159/000504240.
38. Bolasco P. Hemodialysis-Nutritional Flaws in Diagnosis and Prescriptions. Could Amino Acid Losses Be the Sharpest “Sword of Damocles”? Nutrients 2020; 12: 1773. Doi: 10.3390/nu12061773.
39. Panichi V, Scatena A, Rosati A, Giusti R, Ferro G, Malagnino E, et al. High-volume online haemodiafiltration improves erythropoiesis-stimulating agent (ESA) resistance in comparison with low-flux bicarbonate dialysis: results of the REDERT study. Nephrol Dial Transplant 2015; 30: 682-9. Doi: 10.1093/ndt/gfu345.
40. Lee SW, Kim JM, Lim HJ, Hwang YH, Kim SW, Chung W, et al. Serum hepcidin may be a novel uremic toxin, which might be related to erythropoietin resistance. Sci Rep 2017; 7: 4260. Doi: 10.1038/s41598-017-04664-y.
41. Bowry SK, Canaud B. Achieving High Convective Volumes in On-Line Hemodiafiltration. Blood Purif 2013; 35(Suppl 1): 23-8. Doi: 10.1159/000346379.
42. Canaud B, Vienken J, Ash S, Ward R. Hemodiafiltration to Addres Unmet Medical Needs ESKD Patients. Clin J Am Soc Nephrol 2018; 13(9): 1435-43. Doi: 10.2215/CJN.12631117.