EXPANDED HEMODIALYSIS: BASIC PRINCIPLES AND CLINICAL SIGNIFICANCE

EXPANDED HEMODIALYSIS

  • Dejan Petrović Fakultet medicinskih nauka Kragujevac
  • Marko Nenadović
  • Aleksandra Nikolić
  • Marijana Stanojević Pirković
  • Milica Kostović
  • Branislava Drašković
  • Tomislav Nikolić
  • Jasna Trbojević Stanković

Abstract


Expanded hemodialysis is a method of treatment to replace kidney function, which effectively remove uremic toxins of middle molecular weight from the blood patients with the end stage of chronic kidney disease. The two basic principles of removing uremic toxins during an expanded hemodialysis session are diffusion and convection. The basis of diffusion is the concentration gradient, and the basis of convection is internal filtration (covective transport). Increased MCO membrane sieving capacity and high internal filtration provide high clearance of middle molecular weight uremic toxins. Expanded hemodialysis prevents the development of microinflammation, malnutrition, resistance to the action of erythropoietin, amyloidosis, accelerated atherosclerosis and atherosclerotic cardiovascular diseases in the population of patients treated with regular dialysis. The task of the nephrologist is to evaluate the different dialysis modalities that are available and to select the optimal dialysis modality for the treatment of each patient individually /individualization of dialysis treatment/.

References

1. Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant 2018; 33(1): 28-34. Doi: 10.1093/ndt/gfy174.

2. Ahmadmehrabi S, Tang WHW. Hemodialysis-induced Cardiovascular Disease. Semin Dial 2018; 31(3): 258-67. Doi: 10.1111/sdi.12694.

3. Escoli R, Carvalho MJ, Cabrita A, Rodrigues A. Diastolic Dysfunction, an Understimated New Challenge in Dialysis. Ther Apher Dial 2019; 23(2): 108-17. Doi: 10.1111/1744-9987.12756.

4. Wolley MJ, Hutchison CA. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant 2018; 33(Suppl 3): 6-11. Doi: 10.1093/ndt/gfy179.

5. Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins 2020; 12(3): 161. Doi: 10.3390/toxins12030161.

6. Lekawanvijit S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins 2018; 10(9): 352. Doi: 10.3390/toxins10090352.

7. Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins 2018; 10(7): 287. Doi: 10.3390/toxins10070287.

8. Mair RD. Sirich TL, Meyer TW. Uremic Toxin Clearance and Cardiovascular Toxicities. Toxins 2018; 10(6): 226. Doi: 10.3390/toxins10060226.

9. Fujii H, Goto S, Fukagawa M. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins 2018; 10(5): 202. Doi: 10.3390/toxins10050202.

10. Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, et al. Indoxyl Sulfate, a Uremic Toxin, Stimulates Reactive Oxygen Species Production and Erythrocyte Cell Death Supposedly by an Organic Anion Transporter 2 (OAT2) and NADPH Oxidase Activity-Dependent Pathways. Toxins 2018; 10(7): 280. Doi: 10.3390/toxins10070280.

11. Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZAM, Mafra D, et al. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020; 12(10): 3147. Doi: 10.3390/nu12103147.

12. Ronco C, Clark WR. Haemodialysis membranes. Nat Rev Nephrol 2018; 14(6): 394-410. Doi: 10.1038/s41581-018-0002-x.

13. Haroon S, Davenport A. Choosing a dialyzer: What clinicians need to know. Hemodialysis Int 2018; 22(Suppl 2): 65-74. Doi: 10.1111/hdi.12702.

14. Wolley M, Jardine M, Hutchison CA. Exploring the Clinical Relevance of Providing Increased Removal of Large Middle Molecules. Clin J Am Soc Nephrol 2018; 13(5): 805-14. Doi: 10.2215/CJN.10110917.

15. Masacane I, Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant 2018; 33(Suppl 3): 12-21. Doi: 10.1093/ndt/gfy224.

16. Lorenzin A, Neri M, Lupi A, Todesco M, Santimaria M, Alghisi A, et al. Quantification of Internal Filtration in Hollow Fiber Hemodialyzers with Medium Cut-Off Membrane. Blood Purif 2018; 46(3): 196-204. Doi: 10.1159/000489993.

17. Ronco C, Marchionna N, Brendolan A, Neri M, Lorenzin A, Rueda AJM. Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant 2018; 33(Suppl 3): 41-7. Doi: 10.1093/ndt/gfy202.

18. Garcia-Prieto A, Vega A, Linares T, Abad S, Macias N, Aragoncillo I, et al. Evaluation of the efficacy of a medium cut-off dialyser and comparison with other high-flux dialysers in conventional haemodialysis and online haemodiafiltration. Clin Kidney J 2018; 11(5): 742-6. Doi: 10.1093/ckj/sfy004.

19. Cozzolino M, Maganoli L, Ciceri P, Conte F, Galassi A. Effects of a medium cut-off (Theranova) dialyser on haemodialysis patients: a prospective, cross-over study. Clin Kidney J 2019; 1-8. Doi: 10.1093/ckj/sfz155.

20. Maduell F, Rodas L, Broseta JJ, Gomez M, Xipell M, Guillen E, et al. Medium Cut-Off Dialyzer versus Eight Hemodiafiltration Dialyzers: Comparison Using a Global Removal Score. Blood Purif 2019; 48(2): 167-74. Doi: 10.1159/000499759.

21. Florens N, Juillard L. Expanded haemodialysis: news from the field. Nephrol Dial Transplant 2018; 33(Suppl 3): 48-52. Doi: 10.1093/ndt/gfy203.

22. Nenadović M, Nikolić A, Kostović M, Drašković B, Jovanović M, Nikolić T, Petrović D. Assessment of the influence of expanded hemodialysis on the rate of removal of middle molecular weight uremic toxins. Med Čas 2020; 54(3): 96-104. Doi: 10.5937/mckg54-30496.

23. Maduell F, Rodas L, Broseta JJ, Gomez M, Font MX, Molina A, et al. High-permeability alternatives to current dialyzers performing both high-flux hemodialysis and postdilution online hemodiafiltration. Artif Organs 2019; 43(10): 1014-21. Doi: 10.1111/aor.13480.

24. Lindgren A, Fjellstedt E, Christensson A. Comparison of Hemodialysis Using a Medium Cutoff Dialyzer versus Hemodiafiltration: A Controled Cross-Over Study. Int J Nephrol Renovascular Dis 2020; 13(43): 273-80. Doi: 10.2147/IJNRD.S263110.

25. Heyne N. Expanded Hemodialysis Therapy: Prescription and Delivery. In: Expanded Hemodialyisi – Innovative Clinical Approach in Dialysis. Contrib Nephrol. Basel, Karger, 2017; 191: 153-7. Doi: 10.1159/000479263.

26. Maduell F, Broseta JJ, Gomez M, Racionero P, Montagud-Marrahi E, Rodas L, et al. Determining factors for hemodiafiltration to equal or exceed the performance of expanded hemodialysis. Artif Organs 2020; 44(10): 448-58. Doi: 10.1111/aor.13700.

27. Sahathevan S, Khor BH, Ng HM, Gafor AHA, Daud ZAM, Mafra D, Karupaiah T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020; 12: 3147. Doi: 10.3390/nu12103147.

28. Zickler D, Schindler R, Willy K, Martus P, Pawlak M, Storr M, et al. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial. Plos One 2017; 12(1): e0169024. Doi: 10.1371/journal.pone.0169024.

29. Lim JH, Jeon Y, Yook JM, Choi SY, Jung HY, Choi JY, et al. Medium cut-off dialyzer improves erythropoiesis stimulating agent resistance in a hepcidin-independent manner in maintenance hemodialysis patients: results from a randomized controlled trial. Rep Sci 2020; 10: 16062. Doi: 10.1038/s41598-020-73124-x.

30. Lee Y, Jang MJ, Jeon J, Lee JE, Huh W, Choi BS, et al. Cardiovascular Risk Comparison between Expanded Hemodialysis Using Theranova and Online Hemodiafiltration (CARTOON): A Multicenter Randomized Controlled Trial. Sci Rep 2021; 11(1): 10807. Doi: 10.1038/s41598-021-90311-6.
Published
2022/03/07
Section
Review Paper