SOME APPLICATIONS OF DNA DATABANKS AS AN INVESTIGATIVE TOOL FOR SOLVING CRIMINAL CASES

  • Francisco Mestres Universitat de Barcelona
  • Goran Zivanovic Department of Genetics, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade

Abstract


The introduction of molecular markers, as STR (Short Tandem Repeats) was a fundamental event in Forensic Genetics. It was possible to obtain individual genetic profiles that allowed to properly identifying individuals with small probability of error. Furthermore, police officers soon discovered the investigative value provided by DNA databanks, defined as a collection of individual DNA profiles usually used to investigate crimes and identify suspects. In this article, the authors present the most common use of these police databanks, comment their drawbacks and how to overcome them. The usage and value of police DNA databanks in special criminal situations are also explained: cold cases, familial searches and dragnets. These three particular situations are described and commented in this article. In summary, although several technical, ethical – legal and international aspects have to be improved, police DNA databanks are really powerful investigation tools that allow solving a large number of criminal cases.    

Author Biographies

Francisco Mestres, Universitat de Barcelona

I'm Associate Professor of Genetics in the Universitat de Barcelona from 1990.

I teach General Genetics, Evolution, Forensic Genetics.

Goran Zivanovic, Department of Genetics, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade

Researcher expert in Population Genetics and Evolution.

Department of Genetics, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade

References

Ashcroft, J., Daniels, D.J., Hart, S.V. (2002). Using DNA to solve cold cases, NIJ Special Report, 1-24.

Asplen, C. (2014). DNA Databases. In D. Primorac & M. Schanfield (Eds.), Forensic DNA applications. An interdisciplinary perspective (pp. 557-569). Boca Raton (FL) USA: CRC Press.

Barash, M., Reshef, A., Voskoboinik, L., Zamir, A., Motro, U., Gafny, R. (2012). A search for obligatory paternal alleles in a DNA database to find an alleged rapist in a fatherless paternity case, Journal of Forensic Sciences, 57: 1098-1101.

Barca, D.C. (2013). Familial DNA testing, House Bill 2261, and the need for Federal oversight, Hastings Law Journal, 64: 499-527.

Benschop, C.C.G., van de Merwe, L., de Jong, J., Vanvooren, V., Kempenaers, M., Kees van der Beek, C.P., Barni, F., Reyes, E.L., Moulin, L., Pene, L., Haned, H., Sijen, T. (2017). Validation of SmartRank: A likelihood ratio software for searching national DNA databases with complex DNA profiles, Forensic Science International: Genetics, 29: 145-153.

Bieber, F.R. (2006). Turning base hits into earned runs: improving the effectiveness of forensic DNA data bank programs, The Journal of Law, Medicine and Ethics, 34: 222-233.

Bieber, R.F., Brenner, C.H., Lazer, D. (2006). Finding criminals through DNA of their relatives, Science, 312: 1315-1316.

Buckleton, J.S., Bright, J.-A., Curran, J.M., Taylor, D. (2016). Validating databases. In J.S. Buckleton, J.-A.Bright & D. Taylor (Eds.). Forensic DNA evidence interpretation. 2nd ed. (pp. 133-180). Boca Raton (FL), USA: CRC Press.

Busher, L. (2002). The use of the U.K. National DNA Database to support an intelligence led approach to the investigation of crime, Journal of Forensic Medicine, 21-25.

Butler, J.M. (2005). Forensic DNA typing: Biology, technology and genetics of STR markers. 2nd ed., Burlington (MA): Elsevier Academic Press.

Butler, J.M. (2010). Fundamentals of Forensic DNA typing. Burlington (MA): Elsevier Academic Press.

Butler, J.M. (2012). Advanced topics in Forensic DNA typing: Methodology.Waltham (MA): Academic Press.

Cale, C.M. (2015). Forensic DNA evidence is not infallible, Nature, 526: 611.

Cale, C.M., Earll, M.E., Latham, K.E., Bush, G.L. (2016). Could secondary DNA transfer falsely place someone at the scene of a crime?, Journal of Forensic Sciences, 61: 196-203.

Cho, M.K., Sankar, P. (2004). Forensic genetics and ethical, legal and social implications beyond the clinic, Nature Genetics, 36 (11 Suppl.): S8-S12.

Comisión Nacional para el uso forense del ADN. (2011). Actividades 2009-2010, Ministerio de Justicia, Madrid, España.

Dundes, L. (2001). Is the American public ready to embrace DNA as a crime-fighting tool? A survey assessing support for DNA databases, Bulletin of Science, Technology & Society, 21: 369-375.

Esmaili, S. (2007). Searching for a needle in a haystack: the constitutionally of police DNA dragnets, Chicago-Kent Law Review, 82: 495-523.

Feehan, C. (2016). DNA database linked burglar to 14 different crime scenes, Forensic Magazine, 4th January 2016.

Fernandez, H.K. (2005). Genetic privacy, abandonment, and DNA dragnets: Is Fourth Amendment jurisprudence adequate?, The Hastings Center Report, 35: 21-23.

Figueredo, E. (2013). El ADN resuelve un brutal asesinato en Gavà 10 años después del caso, La Vanguardia, 31st January 2013.

Fung, W.K., Hu, Y.-Q. (2008). Statistical DNA Forensics. Theory, methods and computation, Chichester, (UK): John Wiley and Sons, Ltd.

Gamero, J.J., Romero, J.L., Peralta, J.L., Carvalho, M., Corte-Real, F. (2007). Spanish public awareness regarding DNA profile databases in forensic genetics: what type of DNA profiles should be included?, Journal Medical Ethics, 33: 598-604.

Gamero, J.J., Romero, J.L., Peralta, J.L., Corte-Real, F., Guillén, M., Anjos, M.J. (2008). A study of Spanish attitudes regarding the custody and use of forensic DNA databases, Forensic Science International: Genetics, 2: 138-149.

García, O., Crespillo, M., Yurrebaso, I. (2017). Suspects identification through “familial searching” in DNA databases of criminal interest. Social, ethical and scientific implications, Revista Española de Medicina Legal, 43: 26-34.

Gill, P., Fereday, L., Morling, N., Schneider, P.M. (2006a). The evolution of DNA databases - recommendations for new European STR loci, Forensic Science International, 156: 242-244.

Gill, P., Fereday, L., Morling, N., Schneider, P.M. (2006b). New multiplexes for Europe-amendments and clarification of strategic development, Forensic Science International, 163: 155-157.

Gill, P., Haned, H., Bleka, O., Hansson, O., Dorum, G., Egeland, T. (2015). Genotyping and interpretation of STR-DNA: low template, mixtures and database matches – twenty years of research and development, Forensic Science International: Genetics, 18: 100-117.

Goodwin, W., Linacre, A., Hadi, S. (2007). An introduction to Forensic Genetics, Chichester, (UK): John Wiley and Sons, Ltd.

Grant, B. (2010). Slime and punishment, The Scientist, March 2010.

Harbison, S.A., Hamilton, J.F., Walsh, S.J. (2001). The New Zealand DNA databank: its development and significance as a crime solving tool, Science and Justice, 41: 33-37.

Heurich, C. (2008). Cold cases: resources for agencies, resolution for families, NIJ Journal, 260: 20-23.

Hunter, P. (2010). Anything you touch may be used against you, EMBO Reports, 11: 424-427.

Innocence Project. (2016). Innocence position on familial searching DNA databases. In,: DNA technology in Forensic Science. Available at: http://anyflip.com/ouiz/qdzi/basic (28/06/18).

Jeffreys, A.J. (2005). Genetic fingerprinting, Nature Medicine, 11: 1035-1039.

Jeffreys, A.J., Brookfield, J.F.Y., Semeonoff, R. (1985). Positive identification of an immigration test-case using human DNA fingerprints, Nature, 317: 818-819.

Jeffreys, A.J., Wilson, V., Thein, S.L. (1985). Individual-specific ‘fingerprints’ of human DNA, Nature, 316: 76-79.

Kaye, D.H. (2010). The double helix and the law of evidence, Cambridge (MA), USA: Harvard University Press.

Kim, J., Mammo, D., Siegel, M.B., Katsanis, S.H. (2011). Policy implications for familial searching, Investigative Genetics, 2: 22.

Krimsky, S. (2011). Twenty years of DNA databanks in the U.S., GeneWatch, 24: 9-11.

Krimsky, S., Simoncelli, T. (2011). Genetic Justice, N.Y.: Columbia University Press.

Lovrich, N.P., Pratt, T.C., Gaffney, M.J., Johnson, C.L., Asplen, C.H., Hurst, L.H., Schellberg, T.M. (2004). National Forensic DNA Study Report. Final Report, U.S. Department of Justice, Washington, USA.

Machado, H., Silva, S. (2016). Voluntary participation in forensic DNA databases: altruism, resistance, and stigma, Science, Technology, & Human Values, 41: 322-343.

Martínez, J. (1997). Una estudiante que volvía de noche a casa muere apuñalada por la espalda, El País, 27th April 1997.

Mestres, F., Vives-Rego, J. (2009). Bancos y bases de datos genéticos para usos forenses, Revista del Poder Judicial, 89: 239-263 (summary in English).

Michaelis, R.C., Flanders jr., R.G., Wulff, P.H. (2008). A litigator’s guide to DNA. From the laboratory to courtroom, Burlington (MA): Elsevier Academic Press.

Miller, G. (2010). Familial DNA testing scores a win in serial killer case, Science, 329: 262.

Morcillo, C, Muñoz, P. (2015). Un hermano del asesino de Eva Blanco viajó hasta Tres Cantos para dar su ADN, ABC, 11th October 2015.

Reilly, P. (2001). Legal and public policy issues in DNA forensics, Nature Reviews Genetics, 2: 313-317.

Rothstein, M.A., Carnahan, S.J. (2001). Legal and policy issues in expanding the scope of law enforcement DNA data banks, Brooklyn Law Review, 67: 127-178.

Schneider, P.M., Martin, P.D. (2001). Criminal DNA databases: the European situation, Forensic Science International, 119: 232-238.

Schuster, B. (2008). Cold cases: strategies explored at NIJ regional trainings, NIJ Journal, 260: 24-26.

Simoncelli, T., Krimsky, S. (2007). A new era of DNA collections: At what cost to Civil Liberties?, American Constitution Society for Law and Policy, 2007: 1-19.

Strachan, T., Read, A. (2011). Human Molecular Genetics, 4th ed. N.Y.: Garland Science.

Suter, S.M. (2010). All in the family: privacy and DNA familial searching, Harvard Journal of Law and Technology, 23: 310-399.

Tarín, S. (2012). La policía resuelve un asesinato ocurrido hace diez años en Tarragona, La Vanguardia, 8th August 2012.

Van Camp, N., Dierickx, K. (2008). The retention of forensic DNA samples: a socio-ethical evaluation of current practices in the EU, Journal of Medical Ethics, 34: 606-610.

Van Oorschot, R.A.H., Jones, M.K. (1997). DNA fingerprints from fingerprints, Nature, 387: 767.

Walker, S. (2004). Police DNA ‘sweeps’ extremely unproductive, Dept. Criminal Justice, University of Nebraska at Omaha.

Wallace, H. (2006). The UK National DNA database: balancing crime detection, human rights and privacy, EMBO Reports, 7: S26-S30.

Walsh, S.J., Bright, J.-A., Buckleton, J.S. (2016). DNA intelligence databases. In J.S. Buckleton, J.-A. Bright & D. Taylor (Eds.), Forensic DNA evidence interpretation, 2nd ed. (pp. 429-445). Boca Raton (FL) USA: CRC Press.

Walsh, S.J., Curran, J.M., Buckleton, J.S. (2010). Modeling forensic DNA database performance, Journal of Forensic Sciences, 55: 1174-1183.

Werrett, D.J. (1997). The National DNA Database, Forensic Science International, 88: 33-42.

Wiegand, P., Budowle, B., Rand, S., Brinkmann, B. (1993). Forensic validation of the STR systems SE33 and TC11, International Journal of Legal Medicine, 105: 315-320.

Zadok, E. (2010). Legislative and ethical questions regarding DNA and other forensic ‘biometric’ databases. In A. Kumar & D. Zhang (Eds.), Ethics and Policy of Biometrics (pp. 27-39). Berlin: Springer Verlag.

Published
2018/12/21
Section
Original Scientific Papers