Impact of Bacillus subtilis QST713 mushroom grain spawn treatment on yield and green mould control

  • Ivana S Potočnik Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Biljana Todorović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Emil Rekanović Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Jelena Luković Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
  • Dušanka Paunović University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade
  • Svetlana Milijašević-Marčić Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade
Keywords: Mushroom, Bacillus subtilis, Trichoderma, Fungicides,

Abstract


A biofungicide based on Bacillus subtilis QST713 was tested for impact on yield and efficacy against a Trichoderma aggressivum f. europaeum T77 strain from Serbia by coating mushroom grain spawn and comparing the results with the chemical fungicide prochloraz manganese in a mushroom growing room. The tested B. subtilis QST713 strain did not inhibit mycelial growth of Agaricus bisporus in plots free of the pathogen, showing an impact on yield of 91.95%, which was not significantly different from an untreated control. As for the efficacy of the fungicides used against T. aggressivum f. europaeum T77, there were no significant differences between a prochloraz manganese casing treatment, and B. subtilis QST713 coating on mushroom grain spawn, as the efficacy was 70.37 and 53.09%, respectively. These results implied that the biofungicide based on B. subtilis could serve as a harmless alternative to synthetic fungicides in mushroom production, especially during serious compost green muold outbreaks caused by T. aggressivum. Furthermore, the biofungicide should be applied alone because an antagonistic reaction was detected between the fungicide prochloraz and B. subtilis QST713.

References

Abosriwil, S.O., & Clancy, K.J. (2004). A mini-bag technique for evaluation of fungicide effects on Trichoderma spp. in mushroom compost. Pest Management Science, 60(4), 350-358. doi:10.1002/ps.827

Chrysayi-Tokousbalides, M., Kastanias, M.A., Philippoussis, A., & Diamantopoulou, P. (2007). Selective fungitoxicity of famaxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Protection, 26(4), 469-475. doi:10.1016/j.cropro.2006.02.016

Clift, A.D., & Shamshad A. (2009). Modeling mites, molds and mushroom yields in the Australian mushroom industry. In R.S. Anderssen, R.D. Braddock & L.T.H. Newham (Eds.), Proceedings of the 18th World IMACS/MODSIM 09 Congress (pp 491-497). Newham, Cairns, Australia: IMACS/MODSIM.

Doyle, O. (1991). Trichoderma green mould – update. Irish Mushrooms Review, 3, 13-17.

Druzhinina, I.S., & Kubicek C.P. (2005). Species concept and biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University Science B, 6(2), 100-112.

Fletcher, J.T., Connolly, G., Montfield, E.X., & Jacobs, L. (1980). The disapearance of benomyl from mushroom casing. Annals of Applied Biology, 95, 73-82. doi:10.1111/j.1744-7348.1980.tb03972.x

Gea, F.J., Tello, J., & Navarro, M. (2010). Efficacy and effects on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop Protection, 29(9), 1021-1025.

Geels F.P. (1997). Rondetafel – bijeenkomst over Trichoderma. Champignoncultuur, 41, 13.

Grogan, H.M. (2008). Challenges facing mushroom disease control in the 21st century. In J.I. Lelley & J.A.Buswell (Eds.), Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products (pp 120-127). Bonn, Germany: WSMBMP.

Grogan, H., & Fletcher J.T. (1993). Control of Trichoderma harzianum in compost using fungicides. HDC Contract Report M1a, 1-26.

Grogan, H.M., & Gaze, R.H. (2000). Fungicide resistance among Cladobotryum spp. – causal agents of cobweb disease of the edible mushroom Agaricus bisporus. Mycological Research, 10(3), 357-364. doi:10.1017/s0953756299001197

Grogan, H.M., Noble, R., Gaze, R.H., & Fletcher, J.F., (1996). Control of Trichoderma harzianum - a weed mould of mushroom cultivation. In Proceedings of 1996 Brighton Crop Protection Confernece: Pests and Diseases, 1 (pp 337-342). Aldershot, UK: BCPC.

Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I.S., Kubicek, C.P.,,,, Kredics, L. (2007). Green mold diseases of Agaricus and Pleurotus are caused by related but phylogenetically different Trichoderma species. Phytopathology, 97(4), 532-537. doi:10.1094/phyto-97-4-0532

Hatvani, L., Sabolić, P., Koscube, S., Kredics, L., Czifra, D., Vagvologyi, C.... Kosalec, I. (2012). The first report on mushroom green mold in Croatia. Archives of Industrial Hygiene and Toxicology, 63, 481-487.

Hermosa, M.R., Grondona, I., & Monte, E. (1999). Isolation of Trichoderma harzianum Th2 from commercial mushroom compost in Spain. Plant Disease, 83(6), 591.

Kim, W.G., Weon, H.Y., Seok, S.J., & Lee, K.H. (2008). In vitro antagonistic characteristics of Bacilli isolates against Trichoderma spp. and three species of mushrooms. Mycobiology, 36(4), 266-269. doi:10.4489/myco.2008.36.4.266

Kosanović, D., Potočnik, I., Duduk, B., Vukojević, J., Stajić, M., Rekanović, E., Milijašević-Marčić, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Annals of Applied Biology, 163(2), 218-230. doi:10.1111/aab.12048

Kredics, L., Garcia Jimenez, L., Naeimi, S., Czifra, D., Urban, P., Manczinger, L., ... Hatvani, L. (2010). A challenge to mushroom growers: the green mould disease of cultivated champignons. In A. Mendez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp 295-305). Badajoz, Spain: Formatex. Available at http://www.formatex.info/microbiology2/295-305.pdf

Mamoun, M.L., Iapicco, R., Savoie, J.M., & Olivier, J.M. (2000). Green mould disease in France: Trichoderma harzianum Th2 and other species causing damages on mushroom farms. In L.J.L.D. van Griensven (Ed.), Science and cultivation of edible fungi. Proceedings of the 15th International Congress on the Science and Cultivation of Edible Fungi (pp 625-632). Maastricht, Netherlands: SCEF.

Milijašević-Marčić, S., Stepanović, M., Todorović, B., Duduk, B., Stepanović, J., Rekanović, E., Potočnik, I. (2017). Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. European Journal of Plant Pathology, 148(3), 509-519. doi:10.1007/s10658-016-1107-3

Nagy, A., Manczinger, L., Tombacz, D., Hatvani, L., Gyorfi, J., Antal, Z., . Kredics, L. (2012). Biological control of oyster mushroom green mould disease by antagonistic Bacillus species. IOBC-WPRS Bulletin, 78, 289-293.

Pandin, C., Vėdie, R., Rousseau, T., Le Coq, D., Aymerich, S., Briandet, R. (2018a). Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biological Control, 127, 39-54.

Pandin, C., Le Coq, D., Deschamps, J., Vėdie, R., Rousseau, T., Aymerich, S., & Briandet, R. (2018b). Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease. Journal of Biotechnology, 278, 10-19.

Rinker, D.L. (1993) Disease management strategies for Trichoderma mould. Mushroom World, 4, 3-5.

Rinker, D.L., & Alm, G. (1997a). Sensitivity of spawn-run compost or casing to a green mould infection. Mushroom World, 8(4), 44-48.

Rinker, D.L., & Alm, G. (1997b). Effect of supplementation at spawning or casing on the expression of Trichoderma harzianum, biotype Th4, in commercial mushroom production. Mushroom News, 45(11), 6-11.

Romaine, C.P., Royse, D.J., & Schlagnhaufer, C. (2005). Superpathogenic Trichoderma resistant to Topsin M found in Pennsylvania and Delaware. Mushroom News, 53, 6-9.

Romero-Arenas, O., Lara, M.H., Huato, M.A.D., Hernandez, F.D., & Victoria, D.A.A. (2009). The characteristics of Trichoderma harzianum as a limiting agent in edible mushrooms. Revista Colombiana de Biotecnologia, 11(2), 143-151.

Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A., & Petrini, O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146-170. doi:10.1080/15572536.2003.11833257

Savoie, J.M., Iapicco, R., & Largeteau-Mamoun, M. (2001). Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycological Research, 105(11), 1348-1356. doi:10.1017/s0953756201004993

Seaby, D.A. (1996). Investigation of the epidemiology of green mould of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathology, 45(5), 913-923. doi:10.1111/j.1365-3059.1996.tb02902.x

Sokal, R.R. & Rohlf, F.J. (1995). Biometry: The principles and practice of statistics in biological research (3rd edition). New York, USA: W.H. Freeman and Company.

Vedie, R., & Rousseau, T. (2008). Serenade biofungicide: une innovation mjeure dans les champignonnieres francaises pour lutter contre Trichoderma aggressivum, agent de la moisissure verte du compost. La Lettre du CTC, 21, 1-2.

Yarden, O., Salomon, R., Katan, J., & Aharonson, N. (1990). Involvent of fungi and bacteria in enhanced and nonenhanced biodegradation of carbendazim and other benzimidazole compounds in soil. Canadian Journal of Microbiology, 36, 15-23. doi:10.1139/m90-004

Published
2018/12/29
Section
Original Scientific Paper