Allelic profile of Serbian Xanthomonas campestris pv. campestris isolates from cabbage

  • Tatjana Popović Institut za zaštitu bilja i životnu sredinu, Beograd
  • Aleksandra Jelušić University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade
  • Petar Mitrović Institute of Field and Vegetable Crops, Maksima Gorkog 30, Novi Sad
  • Renata Iličić University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad
  • Sanja Marković University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, Belgrade
Keywords: Xanthomonas campestris, black rot, cabbage, genetic diversity, allelic profile


Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease of cabbage (Brassica oleracea var. capitata L.), is one of the most important bacteria which affect proper cabbage growth, leading to head weight and quality losses and thereby drastically reducing its marketing value. The pathogen is genetically diverse, which is evident from the presence of eleven races worldwide and more than thirty combinations of allelic profiles. Therefore, this study aimed to determine the allelic profiles of Serbian cabbage Xcc strains obtained in 2014. The analysis was done on three selected Xcc strains whose DNA
was first amplified using polymerase chain reaction (PCR) with four housekeeping genes – P-X-dnaK, fyuA, gyrB, and rpoD, then sequenced, and the obtained sequences were finally used to determine allelic profiles. Allelic profiles were determined by comparison with 33 Xcc strains obtained from different hosts and regions, whose allelic profiles had been determined previously. A non-redundant database (NRDB) from the pubMLST was used for allelic profile determination and Phyloviz software for constructing a minimum spanning tree.
The obtained allelic profile of all Serbian Xcc cabbage strains was 1, 3, 1, 1 for the P-X-dnaK, fyuA, gyrB and rpoD genes, respectively. This profile is assigned as sequence type 2 (ST2) and it coincides with a Portuguese B. oleracea Xcc strain, CPBF 213, originating from B. oleracea var. costata. No connection between sequence type (ST) and the host was detected.


Author Biography

Tatjana Popović, Institut za zaštitu bilja i životnu sredinu, Beograd


Afrin, K.S., Rahim, M.A., Jung, H.J., Park, J.I., Kim, H.T., & Nou, I.S. (2019). Development of molecular marker through genome realignment for specific detection of Xanthomonas campestris pv. campestris race 5, a pathogen of black rot disease. Journal of Microbiology and Biotechnology, 29(5), 785-793. doi:10.4014/jmb.1901.01050

Almeida, N.F., Yan, S., Cai, R., Clarke, C.R., Morris, C.E., Schaad, N.W. … Vinatzer, B.A. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100(3), 208-215. doi: 10.1094/ PHYTO-100-3-0208

Bella, P., Moretti, C., Licciardello, G., Strano, C.P., Pulvirenti, A., Alaimo, S. … Catara, V. (2019). Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathology, 68(2), 278-287. doi: 10.1111/ppa.12946

Cruz, J., Tenreiro, R., & Cruz, L. (2018). Inference of the phylogenetic diversity and population structure of Xanthomonas campestris affecting Brassicaceae using a multilocus sequence typing-based approach. Plant Pathology, 67(4), 948-956. doi: 10.1111/ppa.12791

da Silva, A.L.B.R., Candian, J.S., do Rego, E.R., Coolong, T., & Dutta, B. (2020). Screening cabbage cultivars for resistance to black rot under field conditions. HortTechnology, 30(3), 448-455.

Eichmeier, A., Peňazova, E., Pokluda, R., & Vicente, J.G. (2019). Detection of Xanthomonas campestris pv. campestris through a real-time PCR assay targeting the Zur gene and comparison with detection targeting the hrpF gene. European Journal of Plant Pathology, 155(3), 891-902. doi: 10.1007/s10658-019-01820-0

Fargier, E., Fischer-Le Saux, M., & Manceau, C. (2011). A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Systematic and Applied Microbiology, 34(2), 156-165. doi: 10.1016/j.syapm.2010.09.001

Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., & Spratt, B.G. (2004). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of bacteriology, 186(5), 1518-1530. doi: 10.1128/JB.186.5.1518-1530.2004

Hugouvieux, V., Barber, C.E., & Daniels, M.J. (1998). Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Molecular Plant-Microbe Interactions, 11(6), 537-543. doi: 10.1094/MPMI.1998.11.6.537

Jelušić, A., Berić, T., Mitrović, P., Dimkić, I., Stanković, S., Marjanović-Jeromela, A., & Popović, T. (2020). New insights into the genetic diversity of Xanthomonas campestris pv. campestris isolates from winter oilseed rape in Serbia. Plant Pathology, (accepted 12-Aug-2020).

Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M.C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Applied and Environmental Microbiology, 66(12), 5213-5220. doi: 10.1128/AEM.66.12.5213-5220.2000

Massomo, S.M.S., Mabagala, R.B., Swai, I.S., Hockenhull, J., & Mortensen, C.N. (2004). Evaluation of varietal resistance in cabbage against the black rot pathogen, Xanthomonas campestris pv. campestris in Tanzania. Crop Protection, 23(4), 315-325. doi:10.1016/j.cropro.2003.09.001

Neik, T.X., Barbetti, M.J., & Batley, J. (2017). Current status and challenges in identifying disease resistance genes in Brassica napus. Frontiers in Plant Science, 8, 1788. doi:10.3389/fpls.2017.01788

Peňazova, E., Eichmeier, A., Čechova, J., Baranek, M., & Pokluda, R. (2015). Evaluation of different methods of DNA extraction for detection of bacterium Xanthomonas campestris pv. campestris in cabbage leaves. Acta Scientiarum Polonorum-Hortorum Cultus, 14(6), 141-150.

Popović, T., Jošić, D., Starović, M., Milovanović, P., Dolovac, N., Poštić, D., & Stanković, S. (2013). Phenotypic and genotypic characterization of Xanthomonas campestris strains isolated from cabbage, kale and broccoli. Archives of Biological Sciences, 65(2), 585-593. doi: 10.2298/ABS1302585P

Popović, T., Mitrović, P., Jelušić, A., Dimkić, I., Marjanović-Jeromela, A., Nikolić, I., & Stanković, S. (2019). Genetic diversity and virulence of Xanthomonas campestris pv. campestris isolates from Brassica napus and six Brassica oleracea crops in Serbia. Plant Pathology, 68(8), 1448-1457. doi: 10.1111/ppa.13064

Rubel, M.H., Natarajan, S., Hossain, M.R., Nath, U.K., Afrin, K.S., Lee, J.H. … Nou, I.S. (2019). Pathovar specific molecular detection of Xanthomonas campestris pv. campestris, the causal agent of black rot disease in cabbage. Canadian Journal of Plant Pathology, 41(3), 318-328. doi:10.1080/07060661.2019.1570973

Singh, J., Upadhyay, A.K., Bahadur, A., Singh, B., Singh, K.P., & Rai, M. (2006). Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Scientia Horticulturae, 108(3), 233-237. doi:10.1016/j.scienta.2006.01.017

Williams, P.H. (1980). Black rot: a continuing threat to world crucifers. Plant Disease, 64(8), 736-742. doi: 10.1094/PD-64-736

Young, J.M., Park, D.C., Shearman, H.M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366-377. doi: 10.1016/j. syapm.2008.06.004

Original Scientific Paper