Assessment of the genotoxic potential of temephos

  • Hayal Cobanoglu Çanakkale Onsekiz Mart University, Vocational Health College, Terzioglu Campus, 17100 Çanakkale, Turkey
  • Akin Cayir Çanakkale Onsekiz Mart University
Keywords: Pesticide exposure, genetic damage, micronucleus, sister chromatid exchange, cytostatic effect

Abstract


Genotoxic effects of pesticides are of great concern for public health due to the fact that they are widely used for both domestic and industrial purposes. Temephos is a member of organophosphorus pesticides, which is the most widely used group of chemicals against both agricultural and domestic insects. We therefore aimed in the present study to investigate the genotoxic and cytotoxic effects of temephos on human peripheral blood lymphocytes, using the cytokinesis-block micronucleus (CBMN) and sister chromatid exchange assays. The results showed that micronucleus (MN) frequency increased at concentrations of 50 and 75 μg/ml аlthough it was not found statically significant (p>0.05). We found that sister chromatid exchange (SCE) values at concentrations of 50 and 75 μg/ml were significantly higher than those obtained for the control (p<0.01). We also analyzed associations between temephos exposure and mitotic index (MI), proliferation index (PI), and cell blocked proliferation index (CBPI). There was no significant change in these values at the tested concentrations (p>0.05). It can be concluded that temephos was not cytotoxic at concentrations of 25, 50 and 75 μg/ml. However, it may have a genotoxic potential in human peripheral lymphocytes.

Author Biography

Akin Cayir, Çanakkale Onsekiz Mart University

Prof. Dr.

Çanakkale Onsekiz Mart University, Vocational Health College

References

Aiub, C.A.F., Coelho, E.C.A., Sodré, E., Pinto, L.F.R., & Felzenszwalb, I. (2002). Genotoxic evaluation of the organophosphorus pesticide temephos. Genetics and Molecular Research, 1(2), 159-166.

Akbel, E., Arslan-Acaroz, D., Demirel, H.H., Kucukkurt, I., & Ince, S. (2018). The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicology Research, 7(3), 503-512.

Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sabzevari, O. (2003). Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Human & Experimental Toxicology, 22(4), 205-211. doi:10.1191/0960327103ht346oa

Benitez-Trinidad, A.B., Herrera-Moreno, J.F., Vazquez- Estrada, G., Verdin-Betancourt, F.A., Sordo, M., Ostrosky-Wegman, P., . . . Rojas-Garcia, A.E. (2015). Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells. Toxicology in Vitro, 29(4), 779-786. doi:10.1016/j.tiv.2015.02.008

Bolognesi, C., & Holland, N. (2016). The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutation Researc/Reviews in Mutation Research, 770(Part A), 183-203. doi:10.1016/j. mrrev.2016.04.006

Çayir, A., Coskun, M., Coskun, M., & Cobanoglu, H. (2018). DNA damage and circulating cell free DNA in greenhouse workers exposed to pesticides. Environmental and Molecular Mutagenesis, 59(2), 161-169.

Cayir, A., Coskun, M., Coskun, M., & Cobanoglu, H. (2019). Comet assay for assessment of DNA damage in greenhouse workers exposed to pesticides. Biomarkers, 24(6), 592-599.

Cobanoglu, H., Coskun, M., Coskun, M., & Çayir, A. (2019). Results of buccal micronucleus cytome assay in pesticide-exposed and non-exposed group. Environmental Science and Pollution Research International, 26(19), 19676-19683.

Cox, C., & Surgan, M. (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environmental Health Perspectives, 114(12), 1803-1806. doi:10.1289/ ehp.9374

Eastmond, D.A., & Tucker, J.D. (1989). Identification of aneuploidy‐inducing agents using cytokinesis‐blocked human lymphocytes and an antikinetochore antibody. Environmental and Molecular Mutagenesis, 13(1), 34-43. doi: 10.1002/em.2850130104

Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research, 455(1-2), 81-95. doi:10.1016/s0027-5107(00)00065-8

Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084-1104. doi:10.1038/nprot.2007.77

Grover, P., Danadevi, K., Mahboob, M., Rozati, R., Banu, B. S., & Rahman, M. F. (2003). Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Mutagenesis, 18(2), 201-205. doi:10.1093/ mutage/18.2.201

Kastan, M.B. (2008). DNA damage responses: mechanisms and roles in human disease: 2007 GHA Clowes Memorial Award Lecture. Molecular Cancer Research, 6(4), 517-524. doi:10.1158/1541-7786.MCR-08-0020

Lebailly, P., Vigreux, C., Lechevrel, C., Ledemeney, D., Godard, T., Sichel, F., . . . Gauduchon, P. (1998). DNA damage in mononuclear leukocytes of farmers measured using the alkaline comet assay: Modifications of DNA damage levels after a one-day field spraying period with selected pesticides. Cancer Epidemiology Biomarkers & Prevention, 7(10), 929-940.

Lorge, E., Hayashi, M., Albertini, S., & Kirkland, D. (2008). Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. Mutation Research, 655(1-2), 1-3. doi:10.1016/j. mrgentox.2008.06.003

Luzhna, L., Kathiria, P., & Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Frontiers in Genetics, 4, 131. doi:10.3389/fgene.2013.0013188

Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M., & Hungerford, D.A. (1960). Chromosome preparations of leukocytes cultured from human peripheral blood. Experimental Cell Research, 20(3), 613-616. doi:10.1016/0014- 4827(60)90138-5

Norppa, H., Bonassi, S., Hansteen, I.L., Hagmar, L., Stromberg, U., Rossner, P., . . . Fucic, A. (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutation ResearchFundamental and Molecular Mechanisms of Mutagenesis, 600(1- 2), 37-45. doi:10.1016/j.mrfmmm.2006.05.030

Ojha, A., & Gupta, Y. K. (2015). Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Human & Experimental Toxicology, 34(4), 390- 400. doi:10.1177/0960327114537534

PAN Europe (2006). What substances are banned and authorised in the EU market ? Retrieved from Pesticides Action Network Europe November 10, 2020: https://www.pan-europe.info/old/Archive/About%20pesticides/Banned%20 and%20authorised.htm#banned

Perry, P., & Wolff, S. (1974). New Giemsa method for the differential staining of sister chromatids. Nature, 251(5471), 156-158. doi:10.1038/251156a0

Pommier, Y., Zwelling, L.A., Kao-Shan, C.-S., Whang- Peng, J., & Bradley, M.O. (1985). Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations, and cytotoxicity in Chinese hamster cells. Cancer Research, 45(7), 3143-3149.

Possamai, F., Fortunato, J., Feier, G., Agostinho, F., Quevedo, J., Wilhelm Filho, D., & Dal-Pizzol, F. (2007). Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environmental Toxicology and Pharmacology, 23(2), 198-204.

Rahman, M.F., Mahboob, M., Danadevi, K., Saleha Banu, B., & Grover, P. (2002). Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research, 516(1-2), 139-147. doi:10.1016/s1383- 5718(02)00033-5

Ranjbar, A., Pasalar, P., & Abdollahi, M. (2002). Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Human and Experimental Toxicology, 21(4), 179-182. doi:10.1191/0960327102ht238oa

Ranjbar, A., Solhi, H., Mashayekhi, F.J., Susanabdi, A., Rezaie, A., & Abdollahi, M. (2005). Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environmental Toxicology and Pharmacology, 20(1), 88-91.

Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., . . . Abdollahi, M. (2005). Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human and Experimental Toxicology, 24(9), 439- 445. doi:10.1191/0960327105ht549oa

Verdin-Betancourt, F.A., Figueroa, M., Lopez- Gonzalez, M.D., Gomez, E., Bernal-Hernandez, Y.Y., Rojas-Garcia, A.E., & Sierra-Santoyo, A. (2019). In vitro inhibition of human red blood cell acetylcholinesterase (AChE) by temephos-oxidized products. Scientific Reports, 9(1), 1-11. doi: 10.1038/s41598-019-51261-2

WHO/FAO (2006). Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues. Retrieved from FAO: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPRrepor2006.pdf

WHO/HSE/WSH (2009). Temephos in drinking-water: Use for vector control in drinking-water sources and containers. Geneva, Switzerland: WHO.

Wilson III, D.M., & Thompson, L.H. (2007). Molecular mechanisms of sister-chromatid exchange. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 616(1-2), 11-23.

Published
2021/03/09
Section
Original Scientific Paper