Ocena genotoksičnog potencijala temefosa

  • Cobanoglu Hayal Çanakkale Onsekiz Mart University, Vocational Health College, Terzioglu Campus, 17100 Çanakkale, Turkey
  • Akin Cayir Çanakkale Onsekiz Mart University
Ključne reči: izlaganje pesticidima, genetska oštećenja, mikronukleus, razmena sestrinskih hromatida, citostatičko delovanje

Sažetak


Genotoksično delovanje pesticida na javno zdravlje je od velikog značaja zbog široke upotrebe takvih hemikalija u domaćinstvu i industriji. Temefos pripada organofosfornim pesticidima, koji čine najzastupljeniju grupu hemijskih sredstava koja se koriste za suzbijanje insekata u poljoprivredi i domaćinstvima. Otuda je cilj ovog istraživanja bio da se ispita genotiksični i citotoksični uticaj temefosa na kulturu humanih limfocita periferne krvi, koristeći mikronukleus test sa blokiranom citokinezom (CBMN) i test razmene sestrinskih hromatida (SCE). Rezultati su pokazali da se brojnost mikronukleusa (MN) povećava na koncentracijama od 50 i 75 μg/ml, mada nije ustanovljena statistički značajna razlika (p>0.05). Vrednosti SCE na koncentracijama od 50 i 75 μg/ml bile su značajno više u odnosu na kontrolu (p<0.01). Takođe smo analizirali i odnose između tretmana temefosom i indeksa mitoze (MI), indeksa proliferacije (PI) i indeksa proliferacije pri blokiranoj citokinezi (CBPI). Nije uočena značajna razlika u ovim vrednostima na testiranim koncentracijama (p>0.05). Može se zaključiti da temefos nije bio citotoksičan na koncentracijama od 25, 50 i 75 μg/ml. Ipak, genotoksični potencijal u humanim limfocitima periferne krvi se ne može isključiti.

Biografija autora

Akin Cayir, Çanakkale Onsekiz Mart University

Prof. Dr.

Çanakkale Onsekiz Mart University, Vocational Health College

Reference

Aiub, C.A.F., Coelho, E.C.A., Sodré, E., Pinto, L.F.R., & Felzenszwalb, I. (2002). Genotoxic evaluation of the organophosphorus pesticide temephos. Genetics and Molecular Research, 1(2), 159-166.

Akbel, E., Arslan-Acaroz, D., Demirel, H.H., Kucukkurt, I., & Ince, S. (2018). The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicology Research, 7(3), 503-512.

Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sabzevari, O. (2003). Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Human & Experimental Toxicology, 22(4), 205-211. doi:10.1191/0960327103ht346oa

Benitez-Trinidad, A.B., Herrera-Moreno, J.F., Vazquez- Estrada, G., Verdin-Betancourt, F.A., Sordo, M., Ostrosky-Wegman, P., . . . Rojas-Garcia, A.E. (2015). Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells. Toxicology in Vitro, 29(4), 779-786. doi:10.1016/j.tiv.2015.02.008

Bolognesi, C., & Holland, N. (2016). The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. Mutation Researc/Reviews in Mutation Research, 770(Part A), 183-203. doi:10.1016/j. mrrev.2016.04.006

Çayir, A., Coskun, M., Coskun, M., & Cobanoglu, H. (2018). DNA damage and circulating cell free DNA in greenhouse workers exposed to pesticides. Environmental and Molecular Mutagenesis, 59(2), 161-169.

Cayir, A., Coskun, M., Coskun, M., & Cobanoglu, H. (2019). Comet assay for assessment of DNA damage in greenhouse workers exposed to pesticides. Biomarkers, 24(6), 592-599.

Cobanoglu, H., Coskun, M., Coskun, M., & Çayir, A. (2019). Results of buccal micronucleus cytome assay in pesticide-exposed and non-exposed group. Environmental Science and Pollution Research International, 26(19), 19676-19683.

Cox, C., & Surgan, M. (2006). Unidentified inert ingredients in pesticides: implications for human and environmental health. Environmental Health Perspectives, 114(12), 1803-1806. doi:10.1289/ ehp.9374

Eastmond, D.A., & Tucker, J.D. (1989). Identification of aneuploidy‐inducing agents using cytokinesis‐blocked human lymphocytes and an antikinetochore antibody. Environmental and Molecular Mutagenesis, 13(1), 34-43. doi: 10.1002/em.2850130104

Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research, 455(1-2), 81-95. doi:10.1016/s0027-5107(00)00065-8

Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084-1104. doi:10.1038/nprot.2007.77

Grover, P., Danadevi, K., Mahboob, M., Rozati, R., Banu, B. S., & Rahman, M. F. (2003). Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Mutagenesis, 18(2), 201-205. doi:10.1093/ mutage/18.2.201

Kastan, M.B. (2008). DNA damage responses: mechanisms and roles in human disease: 2007 GHA Clowes Memorial Award Lecture. Molecular Cancer Research, 6(4), 517-524. doi:10.1158/1541-7786.MCR-08-0020

Lebailly, P., Vigreux, C., Lechevrel, C., Ledemeney, D., Godard, T., Sichel, F., . . . Gauduchon, P. (1998). DNA damage in mononuclear leukocytes of farmers measured using the alkaline comet assay: Modifications of DNA damage levels after a one-day field spraying period with selected pesticides. Cancer Epidemiology Biomarkers & Prevention, 7(10), 929-940.

Lorge, E., Hayashi, M., Albertini, S., & Kirkland, D. (2008). Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects. Mutation Research, 655(1-2), 1-3. doi:10.1016/j. mrgentox.2008.06.003

Luzhna, L., Kathiria, P., & Kovalchuk, O. (2013). Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Frontiers in Genetics, 4, 131. doi:10.3389/fgene.2013.0013188

Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M., & Hungerford, D.A. (1960). Chromosome preparations of leukocytes cultured from human peripheral blood. Experimental Cell Research, 20(3), 613-616. doi:10.1016/0014- 4827(60)90138-5

Norppa, H., Bonassi, S., Hansteen, I.L., Hagmar, L., Stromberg, U., Rossner, P., . . . Fucic, A. (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutation ResearchFundamental and Molecular Mechanisms of Mutagenesis, 600(1- 2), 37-45. doi:10.1016/j.mrfmmm.2006.05.030

Ojha, A., & Gupta, Y. K. (2015). Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Human & Experimental Toxicology, 34(4), 390- 400. doi:10.1177/0960327114537534

PAN Europe (2006). What substances are banned and authorised in the EU market ? Retrieved from Pesticides Action Network Europe November 10, 2020: https://www.pan-europe.info/old/Archive/About%20pesticides/Banned%20 and%20authorised.htm#banned

Perry, P., & Wolff, S. (1974). New Giemsa method for the differential staining of sister chromatids. Nature, 251(5471), 156-158. doi:10.1038/251156a0

Pommier, Y., Zwelling, L.A., Kao-Shan, C.-S., Whang- Peng, J., & Bradley, M.O. (1985). Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations, and cytotoxicity in Chinese hamster cells. Cancer Research, 45(7), 3143-3149.

Possamai, F., Fortunato, J., Feier, G., Agostinho, F., Quevedo, J., Wilhelm Filho, D., & Dal-Pizzol, F. (2007). Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environmental Toxicology and Pharmacology, 23(2), 198-204.

Rahman, M.F., Mahboob, M., Danadevi, K., Saleha Banu, B., & Grover, P. (2002). Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutation Research, 516(1-2), 139-147. doi:10.1016/s1383- 5718(02)00033-5

Ranjbar, A., Pasalar, P., & Abdollahi, M. (2002). Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Human and Experimental Toxicology, 21(4), 179-182. doi:10.1191/0960327102ht238oa

Ranjbar, A., Solhi, H., Mashayekhi, F.J., Susanabdi, A., Rezaie, A., & Abdollahi, M. (2005). Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environmental Toxicology and Pharmacology, 20(1), 88-91.

Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., . . . Abdollahi, M. (2005). Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human and Experimental Toxicology, 24(9), 439- 445. doi:10.1191/0960327105ht549oa

Verdin-Betancourt, F.A., Figueroa, M., Lopez- Gonzalez, M.D., Gomez, E., Bernal-Hernandez, Y.Y., Rojas-Garcia, A.E., & Sierra-Santoyo, A. (2019). In vitro inhibition of human red blood cell acetylcholinesterase (AChE) by temephos-oxidized products. Scientific Reports, 9(1), 1-11. doi: 10.1038/s41598-019-51261-2

WHO/FAO (2006). Pesticide residues in food. Joint FAO/WHO Meeting on Pesticide Residues. Retrieved from FAO: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPRrepor2006.pdf

WHO/HSE/WSH (2009). Temephos in drinking-water: Use for vector control in drinking-water sources and containers. Geneva, Switzerland: WHO.

Wilson III, D.M., & Thompson, L.H. (2007). Molecular mechanisms of sister-chromatid exchange. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 616(1-2), 11-23.

Objavljeno
2021/03/09
Kako citirati
Hayal, C., & Cayir, A. (2021). Ocena genotoksičnog potencijala temefosa. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 35(3), 183-191. https://doi.org/10.2298//PIF2003183C
Rubrika
Originalni naučni članak