Primena različitih kombinacija smeša mlečno kiselinskih, fototrofnih bakterija i kvasaca u suzbijanju patogena semena i klijanaca paradajza i paprike

  • Danijela Ristić Institut za zaštitu bilja i životnu sredinu, Teodora Drajzera 9, Beograd
  • Ivan Vučurović Institut za zaštitu bilja i životnu sredinu, Teodora Drajzera 9, Beograd
  • Goran Aleksić Institut za zaštitu bilja i životnu sredinu, Teodora Drajzera 9, Beograd
  • Bogdan Nikolić Institut za zaštitu bilja i životnu sredinu, Teodora Drajzera 9, Beograd
  • Sanja Đurović Institut za zaštitu bilja i životnu sredinu, Teodora Drajzera 9, Beograd
  • Mira Starović
Ključne reči: paradajz, paprika, mlečno kiselinske bakterije, fototrofne bakterije, kvasci, antifungalni potencijal

Sažetak


 

U radu je ispitivan antifungalni uticaj tri kombinacije smeša mlečno kiselinskih bakterija (Lactobacillus plantarum, Lactobacillus rhamnosus), fototrofnih bakterija (Rhodopseudomonas palustris) i kvasaca (Saccharomices cerevisiae) sa melasom šećerne trske označenih kao: EM1, EM5 i EM AGRO, in vitro i in vivo na fitopatogene gljive paradajza i paprike: Fusarium oxysporum, Alternaria alternata, Botrytis cinerea, Colletotrichum sp., Verticilium dahliae i Pythium aphanidermatum. Kombinacija bakterija i kvasca EM5, je u eksperimentima dvojne kultivacije ispoljila najviši stepen inhibicije porasta micelije B. cinerea (38.4%). U mikrodilucionom testu, kombinacija EM1 ispoljila je najveći inhibicioni efekat na B. cinerea (MIC 1x10-3 μl/ml), dok je EM5 pokazala ujednačen efekat inhibicije prema F. oxysporum, A. alternata i Colletotrichum sp.
(MIC 10 μl/ml). Za zaštitu rasada paradajza preporučuje se upotreba EM1 (u koncentracijama 10 i 100 μl/ml) i EM AGRO (10 μl/ml). Za zaštitu rasada paprike preporučuje se upotreba EM1 (100 μl/ml), EM5 i EM AGRO u nižoj koncentraciji (10 μl/ml).

 

Reference

Al-Hetar, M.Y., Zainal Abidin, M.A., Sariah, M., & Wong, M.Y. (2011). Antifungal activity of chitosan against Fusarium oxysporum f.sp. cubense. Journal of Applied Polymer Science, 120, 2434-2439.

Attyia, S.H., & Youssry, A.A. (2001). Application of Saccharomyces cerevisiae as a biocontrol agent against some diseases of Solanaceae caused by Macrophomina phaseolina and Fusarium solani. Egyptian Journal of Biology, 3(1), 79-87.

Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.

Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22(1), 7-17.

Chand-Goyal, T., & Spotts, R.A. (1997). Biological control of postharvest diseases of apple and pear under semicommercial and commercial conditions using three saprophytic yeasts. Biological Control, 10(3), 199-206.

Dalie, D.K.D., Deschamps, A.M., Atanasova-Penichon, V., & Richard Forget, F. (2010). Potential of Pediococcus pentosaceus (L006) isolated from maize leaf to suppress fumonisin-producing fungal growth. Journal of Food Protection, 73(6), 1129-1137.

FAO (2021). FAOSTAT. Food and Agriculture Organization of the United Nation. Retrieved from http://www.fao.org/faostat/en/#data/QC, accesed on 22 April 2021.

Gvozdenović, Đ. (2010). Paprika (Pepper). Novi Sad, Serbia: Institut za ratarstvo i povrtarstvo.

Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7(4), 133-141.

Karimi, K., Amini J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal of Crop Science, 6, 695-703.

Laref, N., & Guessas, B. (2013). Antifungal activity of newly isolates of lactic acid bacteria. Innovative Romanian Food Biotechnology, 13(9), 80-88.

Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarumstrain 21B. Applied and Environmental Microbiology, 66(9), 4084-4090.

Lima, G., Arru, S., De Curtis, F., & Arras, G. (1999). Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. Journal of Industrial Microbiology and Biotechnology, 23, 223-229.

Mannai, S., Benfradj, N., Horrigue-Roauani, N., & Hamdi, N.G. (2018). Antifungal activity and growth promotion of three types of compost extracts against Fusarium oxysporum and Fusarium solani associated with peach seedling decline in nurseries. Journal of Crop Protection, 7(3), 349-363.

Masih, E.I., Slezack-Deschaumes, S., Marmaras, I., Barka, E.A., Vernet, G., Charpentier, C. ... Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea causing the grey mould disease of grapevine. FEMS Microbiology Letters, 202(2), 227-232.

Nally, M.C., Pesce, V., Maturano, Y.P., Munoz, C.J., Combina, M., Toro, M.E. ... Vazquez, F. (2012). Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biology and Technology, 64, 40-48.

Nookongbut, P., Kantachote, D., Khuong, N.Q., Sukhoom, A., Tantirungkij, M., & Limtong, S. (2019). Selection of acid-resistant purple nonsulfur bacteria from peat swamp forests to apply as biofertilizers and biocontrol agents. Journal of Soil Science and Plant Nutrition, 19(3), 488-500.

Nookongbut, P., Kantachote, D., Quoc Khuong, N., & Tantirungkij, M. (2020). The biocontrol potential of acid-resistant Phodopseudomonas palustris KTSSR54 and its exopolymeric substances against rice fungal pathogens to enhance rice growth and yield. Biological Control, 150, 1-10.

Payne, C., Bruce, A., & Staines, H. (2000). Yeast and bacteria as biological control agents against fungal discolouration of Pinus sylvestris blocks in laboratory-based tests and the role of antifungal volatiles. Holzforschung, 54, 563-569.

Petersson, S., & Schnurer, J. (1995). Biocontrol of mold growth in high- moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 61(3), 1027-1032.

Rezaee, S., Gharanjik, S., & Mojerlou, S. (2018). Identification of Fusarium solani f.sp. cucurbitae races using morphological and molecular approaches. Journal of Crop Protection, 7(2), 161-110.

Rosslenbroich, H.J., & Stuebler, D. (2000). Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Protection, 19, 557-561.

Schena, L., Ippolito, A., Zahavi, T., Cohen, L., & Droby, S. (2000). Molecular approaches to assist the screening and monitoring of postharvest biocontrol yeasts. European Journal of Plant Pathology, 106(7), 681-691.

Sesan, T., Oprea, M., Podosu Cristescu, A., Tica, C., & Oancea, F. (1999). Biocontrol of Botrytis cinerea on grapevine with Trichoderma spp. and Saccharomyces chevalieri. Bulletin of the Polish Academy of Sciences – Biological Sciences, 47, 197-205.

Spadaro, D., Garibaldi, A., & Gullino, M.L. (2004). Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and Technology, 33, 141-151.

Stamenković, S., Beškoski, V., Karabegović, I., Lazić, M., & Nikolić, N. (2018). Microbial fertilizers: A comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research, 16(1), e09R01.

Trias, R., Baneras, L., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11(4), 231-236.

Whipps, J.M., & Lumsden, D.R. (1991). Biological control of Phytium species. Biocontrol Science and Tecnology, 1(2), 75-90.

Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J., (2007). Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580.

Zabouri, Y., Cheriguene, A., Chougrani, F., Merzouk, Y., Marchetta, A., Urzi, K., & De Leo, F. (2021). Antifungal activity of lactic acid bacteria against phytopathogenic Alternaria alternata species and their molecular characterization. Journal of Food and Nutrition Research, 60(1), 18-28.

Zahavi, T., Cohen, L., Weiss, B., Schena, L., Daus, A., Kaplunov, T. ... Droby, S. (2000). Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biology and Technology, 20, 115-124.

Zebboudj, N., Yezli W., Hamini-Kadar N., Kihal M., & Henni J.E. (2014). Antifungal activity of lactic acid bacteria against Fusarium oxysporumf. sp. albedinis isolated from diseased date palm in South Algeria. International Journal of Biosciences, 5(9), 99-106.

Zhou, T., Schneider, K.E., & Li, X.Z. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126, 180-185.

Objavljeno
2021/10/07
Rubrika
Originalni naučni članak